This encyclopedia presents an all-embracing collection of analytical surface classes. It provides concise definitions and description for more than 500 surfaces and categorizes them in 38 classes of analytical surfaces. All classes are cross references to the original literature in an excellent bibliography. The encyclopedia is of particular interest to structural and civil engineers and serves as valuable reference for mathematicians.
"This is a comprehensive volume on analytical techniques used in materials science for the characterization of surfaces, interfaces and thin films. This flagship volume is a unique, stand-alone reference for materials science practitioners, process engineers, students and anyone with a need to know about the capabilities available in materials analysis. An encyclopedia of 50 concise articles, this book will also be a practical companion to the forthcoming books in the series."--Knovel.
The third edition of the Encyclopedia of Analytical Science, Ten Volume Set is a definitive collection of articles covering the latest technologies in application areas such as medicine, environmental science, food science and geology. Meticulously organized, clearly written and fully interdisciplinary, the Encyclopedia of Analytical Science, Ten Volume Set provides foundational knowledge across the scope of modern analytical chemistry, linking fundamental topics with the latest methodologies. Articles will cover three broad areas: analytical techniques (e.g., mass spectrometry, liquid chromatography, atomic spectrometry); areas of application (e.g., forensic, environmental and clinical); and analytes (e.g., arsenic, nucleic acids and polycyclic aromatic hydrocarbons), providing a one-stop resource for analytical scientists. Offers readers a one-stop resource with access to information across the entire scope of modern analytical science Presents articles split into three broad areas: analytical techniques, areas of application and and analytes, creating an ideal resource for students, researchers and professionals Provides concise and accessible information that is ideal for non-specialists and readers from undergraduate levels and higher
This encyclopedia presents an all-embracing collection of analytical surface classes. It provides concise definitions and description for more than 500 surfaces and categorizes them in 38 classes of analytical surfaces. All classes are cross references to the original literature in an excellent bibliography. The encyclopedia is of particular interest to structural and civil engineers and serves as valuable reference for mathematicians.
This book presents the basics and characterization of defects at oxide surfaces. It provides a state-of-the-art review of the field, containing information to the various types of surface defects, describes analytical methods to study defects, their chemical activity and the catalytic reactivity of oxides. Numerical simulations of defective structures complete the picture developed. Defects on planar surfaces form the focus of much of the book, although the investigation of powder samples also form an important part. The experimental study of planar surfaces opens the possibility of applying the large armoury of techniques that have been developed over the last half-century to study surfaces in ultra-high vacuum. This enables the acquisition of atomic level data under well-controlled conditions, providing a stringent test of theoretical methods. The latter can then be more reliably applied to systems such as nanoparticles for which accurate methods of characterization of structure and electronic properties have yet to be developed. The book gives guidance to tailor oxide surfaces by controlling the nature and concentration of defects. The importance of defects in the physics and chemistry of metal oxide surfaces is presented in this book together with the prominent role of oxides in common life. The book contains contributions from leaders in the field. It serves as a reference for experts and beginners in the field.
The original Handbook of Surface and Interface Analysis: Methods for Problem-Solving was based on the authors' firm belief that characterization and analysis of surfaces should be conducted in the context of problem solving and not be based on the capabilities of any individual technique. Now, a decade later, trends in science and technology appear
To use materials effectively, their composition, degree of perfection, physical and mechanical characteristics, and microstructure must be accurately determined. This concise encyclopledia covers the wide range of characterization techniques necessary to achieve this. Articles included are not only concerned with the characterization techniques of specific materials such as polymers, metals, ceramics and semiconductors but also techniques which can be applied to materials in general. The techniques described cover bulk methods, and also a number of specific methods to study the topography and composition of surface and near-surface regions. These techniques range from the well-established and traditional to the very latest including: atomic force microscopy; confocal optical microscopy; gamma ray diffractometry; thermal wave imaging; x-ray diffraction and time-resolved techniques. This unique concise encyclopedia comprises 116 articles by leading experts in the field from around the world to create the ideal guide for materials scientists, chemists and engineers involved with any aspect of materials characterization. With over 540 illustrations, extensive cross-referencing, approximately 900 references, and a detailed index, this concise encyclopedia will be a valuable asset to any materials science collection.
Given such problems as rejection, the interface between an implant and its human host is a critical area in biomaterials. Surfaces and Interfaces for Biomaterials summarizes the wealth of research on understanding the surface properties of biomaterials and the way they interact with human tissue. The first part of the book reviews the way biomaterial surfaces form. Part Two then discusses ways of monitoring and characterizing surface structure and behavior. The final two parts of the book look at a range of in vitro and in vivo studies of the complex interactions between biomaterials and the body. Chapters cover such topics as bone and tissue regeneration, the role of interface interactions in biodegradable biomaterials, microbial biofilm formation, vascular tissue engineering and ways of modifying biomaterial surfaces to improve biocompatibility. Surfaces and Interfaces for Biomaterials will be a standard work on how to understand and control surface processes in ensuring biomaterials are used successfully in medicine.