Encapsulation Technologies for Electronic Applications

Encapsulation Technologies for Electronic Applications

Author: Haleh Ardebili

Publisher: William Andrew

Published: 2018-10-23

Total Pages: 510

ISBN-13: 0128119799

DOWNLOAD EBOOK

Encapsulation Technologies for Electronic Applications, Second Edition, offers an updated, comprehensive discussion of encapsulants in electronic applications, with a primary emphasis on the encapsulation of microelectronic devices and connectors and transformers. It includes sections on 2-D and 3-D packaging and encapsulation, encapsulation materials, including environmentally friendly 'green' encapsulants, and the properties and characterization of encapsulants. Furthermore, this book provides an extensive discussion on the defects and failures related to encapsulation, how to analyze such defects and failures, and how to apply quality assurance and qualification processes for encapsulated packages. In addition, users will find information on the trends and challenges of encapsulation and microelectronic packages, including the application of nanotechnology. Increasing functionality of semiconductor devices and higher end used expectations in the last 5 to 10 years has driven development in packaging and interconnected technologies. The demands for higher miniaturization, higher integration of functions, higher clock rates and data, and higher reliability influence almost all materials used for advanced electronics packaging, hence this book provides a timely release on the topic. - Provides guidance on the selection and use of encapsulants in the electronics industry, with a particular focus on microelectronics - Includes coverage of environmentally friendly 'green encapsulants' - Presents coverage of faults and defects, and how to analyze and avoid them


Flexible Electronic Packaging and EncapsulationTechnology

Flexible Electronic Packaging and EncapsulationTechnology

Author: Wei Huang

Publisher: John Wiley & Sons

Published: 2024-06-04

Total Pages: 389

ISBN-13: 3527353593

DOWNLOAD EBOOK

A systematic introduction to the future of electronic packaging Electronic packaging materials are among the most important components of the broader electronics industry, capable of facilitating heat dissipation, redistributing stress on electronic components, and providing environmental protections for electronic systems. Recent advances in integrated circuits, especially the development of flexible electronic technology, have placed increasingly stringent demands on the capabilities of electronic packaging. These technologies have the potential to reshape our world, and they demand a generation of engineers capable of harnessing that potential. Flexible Electronic Packaging and Encapsulation Technology meets this demand with an introduction to the cutting-edge technologies available to package electronic components, as well as the testing methods and applications that bring these technologies to bear on the industry. These packaging technologies promise to bring lightness, flexibility, and environmental friendliness to the next generation of electronic systems. Flexible Electronic Packaging and Encapsulation Technology readers will also find: Survey of commercial electronic packaging materials and patents for reference purposes Guidelines for designing high-performance packaging materials with novel structures An authorial team of leading researchers in the field Flexible Electronic Packaging and Encapsulation Technology is ideal for materials scientists, electronics engineers, solid state physicists, professionals in the semiconductor industry, and any other researchers or professionals working with electronic systems.


Polymers in Electronics

Polymers in Electronics

Author: Zulkifli Ahmad

Publisher: Elsevier

Published: 2023-07-28

Total Pages: 450

ISBN-13: 0323983901

DOWNLOAD EBOOK

Polymers in Electronics: Optoelectronic Properties, Design, Fabrication, and Applications brings together the fundamentals and latest advances in polymeric materials for electronic device applications, supporting researchers, scientists and advanced students, and approaching the topic from a range of disciplines. The book begins by introducing polymeric materials, their dielectric, optical, and thermal properties, and the essential principles and techniques for polymers as applied to electronics. This is followed by detailed coverage of the key steps in the preparation of polymeric materials for opto-electronic devices, including fabrication methods, materials design, rheology, encapsulation, and conductive polymer mechanisms. The final part of the book focuses on the latest developments in advanced devices, covering the areas of photovoltaics, transistors, light-emitting diodes, and stretchable electronics. In addition, it explains mechanisms, design, fabrication techniques, and end applications. This is a highly valuable resource for researchers, advanced students, engineers and R&D professionals from a range of disciplines. Offers introductory coverage of polymeric materials for electronics, including principles, design, properties, fabrication and applications Focuses on key issues such as materials selection, structure-property relationships and challenges in application Explores advanced applications of polymers in photovoltaics, transistors, sensors, light-emitting diodes and stretchable electronics


Polymers in Organic Electronics

Polymers in Organic Electronics

Author: Sulaiman Khalifeh

Publisher: Elsevier

Published: 2020-04-01

Total Pages: 617

ISBN-13: 192788568X

DOWNLOAD EBOOK

Polymers in Organic Electronics: Polymer Selection for Electronic, Mechatronic, and Optoelectronic Systems provides readers with vital data, guidelines, and techniques for optimally designing organic electronic systems using novel polymers. The book classifies polymer families, types, complexes, composites, nanocomposites, compounds, and small molecules while also providing an introduction to the fundamental principles of polymers and electronics. Features information on concepts and optimized types of electronics and a classification system of electronic polymers, including piezoelectric and pyroelectric, optoelectronic, mechatronic, organic electronic complexes, and more. The book is designed to help readers select the optimized material for structuring their organic electronic system.Chapters discuss the most common properties of electronic polymers, methods of optimization, and polymeric-structured printed circuit boards. The polymeric structures of optoelectronics and photonics are covered and the book concludes with a chapter emphasizing the importance of polymeric structures for packaging of electronic devices. - Provides key identifying details on a range of polymers, micro-polymers, nano-polymers, resins, hydrocarbons, and oligomers - Covers the most common electrical, electronic, and optical properties of electronic polymers - Describes the underlying theories on the mechanics of polymer conductivity - Discusses polymeric structured printed circuit boards, including their rapid prototyping and optimizing their polymeric structures - Shows optimization methods for both polymeric structures of organic active electronic components and organic passive electronic components


Rapid Cure Composites

Rapid Cure Composites

Author: Nishar Hameed

Publisher: Elsevier

Published: 2023-05-17

Total Pages: 301

ISBN-13: 0323985351

DOWNLOAD EBOOK

Rapid Cure Composites: Materials, Processing and Manufacturing presents up-to-date information on the design criteria to formulate matrix systems for rapid curing. Emphasis is placed on the role different materials [resin compound and fiber reinforcement] play in developing fast curing composites, assessment of current and novel manufacturing techniques for adapting fast curing processes, the comparison between conventional curing and rapid curing, and different applications in various industrial sectors [e.g., aerospace, automotive, renewables and marine]. The book will be an essential reference resource for academic and industrial researchers working in the field of composite materials, processing and manufacturing organizations, materials scientists, and more. Polymer composites are widely used in several industries, including aerospace, automobile, spray and coatings, and electronics due to their lightweight and superior mechanical properties. However, one of the dominant hurdles towards their growth in commercial industries is the long curing cycle and slow production. - Comprehensively addresses the scientific and technological development of rapid cured epoxy composites - Covers, in detail, the chemistry, processing, structure and performance of rapid cured epoxy composites - Provides detailed comparisons of how/why rapid cure composites are different to conventional composites - Discusses the challenges of the existing technology and future trends


Encyclopedia Of Packaging Materials, Processes, And Mechanics - Set 1: Die-attach And Wafer Bonding Technology (A 4-volume Set)

Encyclopedia Of Packaging Materials, Processes, And Mechanics - Set 1: Die-attach And Wafer Bonding Technology (A 4-volume Set)

Author:

Publisher: World Scientific

Published: 2019-08-27

Total Pages: 1079

ISBN-13: 9811209642

DOWNLOAD EBOOK

Packaging materials, assembly processes, and the detailed understanding of multilayer mechanics have enabled much of the progress in miniaturization, reliability, and functional density achieved by modern electronic, microelectronic, and nanoelectronic products. The design and manufacture of miniaturized packages, providing low-loss electrical and/or optical communication, while protecting the semiconductor chips from environmental stresses and internal power cycling, require a carefully balanced selection of packaging materials and processes. Due to the relative fragility of these semiconductor chips, as well as the underlying laminated substrates and the bridging interconnect, selection of the packaging materials and processes is inextricably bound with the mechanical behavior of the intimately packaged multilayer structures, in all phases of development for traditional, as well as emerging, electronic product categories.The Encyclopedia of Packaging Materials, Processes, and Mechanics, compiled in 8, multi-volume sets, provides comprehensive coverage of the configurations and techniques, assembly materials and processes, modeling and simulation tools, and experimental characterization and validation techniques for electronic packaging. Each of the volumes presents the accumulated wisdom and shared perspectives of leading researchers and practitioners in the packaging of electronic components. The Encyclopedia of Packaging Materials, Processes, and Mechanics will provide the novice and student with a complete reference for a quick ascent on the packaging 'learning curve,' the practitioner with a validated set of techniques and tools to face every challenge in packaging design and development, and researchers with a clear definition of the state-of-the-art and emerging needs to guide their future efforts. This encyclopedia will, thus, be of great interest to packaging engineers, electronic product development engineers, and product managers, as well as to researchers in the assembly and mechanical behavior of electronic and photonic components and systems. It will be most beneficial to undergraduate and graduate students studying materials, mechanical, electrical, and electronic engineering, with a strong interest in electronic packaging applications.


Reliability Technology

Reliability Technology

Author: Norman Pascoe

Publisher: John Wiley & Sons

Published: 2011-04-25

Total Pages: 420

ISBN-13: 0470749660

DOWNLOAD EBOOK

A unique book that describes the practical processes necessary to achieve failure free equipment performance, for quality and reliability engineers, design, manufacturing process and environmental test engineers. This book studies the essential requirements for successful product life cycle management. It identifies key contributors to failure in product life cycle management and particular emphasis is placed upon the importance of thorough Manufacturing Process Capability reviews for both in-house and outsourced manufacturing strategies. The readers? attention is also drawn to the many hazards to which a new product is exposed from the commencement of manufacture through to end of life disposal. Revolutionary in focus, as it describes how to achieve failure free performance rather than how to predict an acceptable performance failure rate (reliability technology rather than reliability engineering) Author has over 40 years experience in the field, and the text is based on classroom tested notes from the reliability technology course he taught at Massachusetts Institute of Technology (MIT), USA Contains graphical interpretations of mathematical models together with diagrams, tables of physical constants, case studies and unique worked examples


Reliability and Failure Analysis of High-Power LED Packaging

Reliability and Failure Analysis of High-Power LED Packaging

Author: Cher Ming Tan

Publisher: Woodhead Publishing

Published: 2022-09-24

Total Pages: 190

ISBN-13: 012822407X

DOWNLOAD EBOOK

Reliability and Failure Analysis of High-Power LED Packaging provides fundamental understanding of the reliability and failure analysis of materials for high-power LED packaging, with the ultimate goal of enabling new packaging materials. This book describes the limitations of the present reliability standards in determining the lifetime of high-power LEDs due to the lack of deep understanding of the packaging materials and their interaction with each other. Many new failure mechanisms are investigated and presented with consideration of the different stresses imposed by varying environmental conditions. The detailed failure mechanisms are unique to this book and will provide insights for readers regarding the possible failure mechanisms in high-power LEDs. The authors also show the importance of simulation in understanding the hidden failure mechanisms in LEDs. Along with simulation, the use of various destructive and non-destructive tools such as C-SAM, SEM, FTIR, Optical Microscopy, etc. in investigation of the causes of LED failures are reviewed. The advancement of LEDs in the last two decades has opened vast new applications for LEDs which also has led to harsher stress conditions for high-power LEDs. Thus, existing standards and reliability tests need to be revised to meet the new demands for high-power LEDs. - Introduces the failure mechanisms of high-power LEDs under varying environmental conditions and methods of how to test, simulate, and predict them - Describes the chemistry underlying the material degradation and its impact on LEDs - Discusses future directions of new packaging materials for improved performance and reliability of high-power LEDs


Implantable Sensor Systems for Medical Applications

Implantable Sensor Systems for Medical Applications

Author: Andreas Inmann

Publisher: Elsevier

Published: 2013-01-02

Total Pages: 535

ISBN-13: 0857096281

DOWNLOAD EBOOK

Implantable sensor systems offer great potential for enhanced medical care and improved quality of life, consequently leading to major investment in this exciting field. Implantable sensor systems for medical applications provides a wide-ranging overview of the core technologies, key challenges and main issues related to the development and use of these devices in a diverse range of medical applications.Part one reviews the fundamentals of implantable systems, including materials and material-tissue interfaces, packaging and coatings, microassembly, electrode array design and fabrication, and the use of biofuel cells as sustainable power sources. Part two goes on to consider the challenges associated with implantable systems. Biocompatibility, sterilization considerations and the development of active implantable medical devices in a regulated environment are discussed, along with issues regarding data protection and patient privacy in medical sensor networks. Applications of implantable systems are then discussed in part three, beginning with Microelectromechanical systems (MEMS) for in-vivo applications before further exploration of tripolar interfaces for neural recording, sensors for motor neuroprostheses, implantable wireless body area networks and retina implants.With its distinguished editors and international team of expert contributors, Implantable sensor systems for medical applications is a comprehensive guide for all those involved in the design, development and application of these life-changing technologies. - Provides a wide-ranging overview of the core technologies, key challenges and main issues related to the development and use of implantable sensor systems in a range of medical applications - Reviews the fundamentals of implantable systems, including materials and material-tissue interfaces, packaging and coatings, and microassembly - Considers the challenges associated with implantable systems, including biocompatibility and sterilization