Annotation Embedded vision systems such as smart cameras have been rapidly developed recently. Vision systems have become smaller and lighter, but their performance has improved. The algorithms in embedded vision systems have their specifications limited by frequency of CPU, memory size, and architecture. The goal of this e-book is to provide a an advanced reference work for engineers, researchers and scholars in the field of robotics, machine vision, and automation and to facilitate the exchange of their ideas, experiences and views on embedded vision system models. The effectiveness for all methods is emphasized in a practical sense for systems presented in this e-book.
This book presents a unique examination of mobile robots and embedded systems, from introductory to intermediate level. It is structured in three parts, dealing with Embedded Systems (hardware and software design, actuators, sensors, PID control, multitasking), Mobile Robot Design (driving, balancing, walking, and flying robots), and Mobile Robot Applications (mapping, robot soccer, genetic algorithms, neural networks, behavior-based systems, and simulation). The book is written as a text for courses in computer science, computer engineering, IT, electronic engineering, and mechatronics, as well as a guide for robot hobbyists and researchers.
The 9-volume set LNAI 14267-14275 constitutes the proceedings of the 16th International Conference on Intelligent Robotics and Applications, ICIRA 2023, which took place in Hangzhou, China, during July 5–7, 2023. The 413 papers included in these proceedings were carefully reviewed and selected from 630 submissions. They were organized in topical sections as follows: Part I: Human-Centric Technologies for Seamless Human-Robot Collaboration; Multimodal Collaborative Perception and Fusion; Intelligent Robot Perception in Unknown Environments; Vision-Based Human Robot Interaction and Application. Part II: Vision-Based Human Robot Interaction and Application; Reliable AI on Machine Human Reactions; Wearable Sensors and Robots; Wearable Robots for Assistance, Augmentation and Rehabilitation of Human Movements; Perception and Manipulation of Dexterous Hand for Humanoid Robot. Part III: Perception and Manipulation of Dexterous Hand for Humanoid Robot; Medical Imaging for Biomedical Robotics; Advanced Underwater Robot Technologies; Innovative Design and Performance Evaluation of Robot Mechanisms; Evaluation of Wearable Robots for Assistance and Rehabilitation; 3D Printing Soft Robots. Part IV: 3D Printing Soft Robots; Dielectric Elastomer Actuators for Soft Robotics; Human-like Locomotion and Manipulation; Pattern Recognition and Machine Learning for Smart Robots. Part V: Pattern Recognition and Machine Learning for Smart Robots; Robotic Tactile Sensation, Perception, and Applications; Advanced Sensing and Control Technology for Human-Robot Interaction; Knowledge-Based Robot Decision-Making and Manipulation; Design and Control of Legged Robots. Part VI: Design and Control of Legged Robots; Robots in Tunnelling and Underground Space; Robotic Machining of Complex Components; Clinically Oriented Design in Robotic Surgery and Rehabilitation; Visual and Visual-Tactile Perception for Robotics. Part VII: Visual and Visual-Tactile Perception for Robotics; Perception, Interaction, and Control of Wearable Robots; Marine Robotics and Applications; Multi-Robot Systems for Real World Applications; Physical and Neurological Human-Robot Interaction. Part VIII: Physical and Neurological Human-Robot Interaction; Advanced Motion Control Technologies for Mobile Robots; Intelligent Inspection Robotics; Robotics in Sustainable Manufacturing for Carbon Neutrality; Innovative Design and Performance Evaluation of Robot Mechanisms. Part IX: Innovative Design and Performance Evaluation of Robot Mechanisms; Cutting-Edge Research in Robotics.
Robotic systems consist of object or scene recognition, vision-based motion control, vision-based mapping, and dense range sensing, and are used for identification and navigation. As these computer vision and robotic connections continue to develop, the benefits of vision technology including savings, improved quality, reliability, safety, and productivity are revealed. Robotic Vision: Technologies for Machine Learning and Vision Applications is a comprehensive collection which highlights a solid framework for understanding existing work and planning future research. This book includes current research on the fields of robotics, machine vision, image processing and pattern recognition that is important to applying machine vision methods in the real world.
The two volume set LNAI 7101 and 7102 constitute the refereed proceedings of the 4th International Conference on Intelligent Robotics and Applications, ICIRA 2011, held in Aachen, Germany, in November 2011. The 122 revised full papers presented were thoroughly reviewed and selected from numerous submissions. They are organized in topical sections on progress in indoor UAV, robotics intelligence, industrial robots, rehabilitation robotics, mechanisms and their applications, multi robot systems, robot mechanism and design, parallel kinematics, parallel kinematics machines and parallel robotics, handling and manipulation, tangibility in human-machine interaction, navigation and localization of mobile robot, a body for the brain: embodied intelligence in bio-inspired robotics, intelligent visual systems, self-optimising production systems, computational intelligence, robot control systems, human-robot interaction, manipulators and applications, stability, dynamics and interpolation, evolutionary robotics, bio-inspired robotics, and image-processing applications.
This three volume set LNAI 9244, 9245, and 9246 constitutes the refereed proceedings of the 8th International Conference on Intelligent Robotics and Applications, ICIRA 2015, held in Portsmouth, UK, in August 2015. The 46 papers included in the third volume are organized in topical sections on mobile robots and intelligent autonomous systems; intelligent system and cybernetics; robot mechanism and design; robotic vision; recognition and reconstruction; and active control in tunneling boring machine.
The three volume set LNAI 7506, LNAI 7507 and LNAI 7508 constitutes the refereed proceedings of the 5th International Conference on Intelligent Robotics and Applications, ICIRA 2012, held in Montreal, Canada, in October 2012. The 197 revised full papers presented were thoroughly reviewed and selected from 271 submissions. They present the state-of-the-art developments in robotics, automation and mechatronics. This volume covers the topics of robot actuators and sensors; robot design, development and control; robot intelligence, learning and linguistics; robot mechanism and design; robot motion analysis and planning; robotic vision, recognition and reconstruction; and planning and navigation.
“Visual Sensing and its Applications: Integration of Laser Sensors to Industrial Robots” provides comprehensive and up-to-date coverage of research and development on this robotic vision system. A laser-structured light is the main concern in discussions of visual sensing. Also addressed in this book are all components of the robotic vision system and an emphasis on how to increase the accuracy of the system using three levels of calibration. This includes calibration of the vision system (eye calibration), calibration of eye-to-hand configuration and calibration of robot kinematics (hand calibration). With the integration of the laser sensors to industrial robots numerous applications in the field of robotic welding, grinding, machining, inspection, and palletizing are illustrated based on practical engineering projects in order to demonstrate how the visual sensing is performed. The book will serve as a valuable resource for researchers and engineers in the areas of robotics and machine vision. Dr. Zhongxue Gan is a vice chairman and chief scientist of the ENN Group, China. He serves as a member of the National Energy Expert Consultation Committee of China and member of the National Coal Council of the USA. He is also a co-founder of Intersmart Robotic Systems Co. Ltd., China. He was a research fellow in flexible automation systems at ABB and a founding director of ABB Corporate Research Robot Laboratories, both in the USA and in China. Dr. Qing Tang is a co-founder and CEO of Intersmart Robotic Systems Co. Ltd., China and an adjunct professor in Physics at Sichuan University, China. He was a principle consulting engineer and project manager at the ABB Corporate Research Robot Laboratory in the USA.
Intelligent recognition methods have recently proven to be indispensable in a variety of modern industries, including computer vision, robotics, medical imaging, visualization and the media. Furthermore, they play a critical role in the traditional fields such as character recognition, natural language processing and personal identification. This cutting-edge book draws together the latest findings of industry experts and researchers from around the globe. It is a timely guide for all those require comprehensive, state-of-the-art advice on the present status and future potential of intelligent recognition technology. Computer-Aided Intelligent Recognition Techniques and Applications: Provides the user community with systems and tools for application in a very wide range of areas, including: IT, education, security, banking, police, postal services, manufacturing, mining, medicine, multimedia, entertainment, communications, data visualization, knowledge extraction, pattern classification and virtual reality. Disseminates information in a plethora of disciplines, for example pattern recognition, AI, image processing, computer vision and graphics, neural networks, cryptography, fuzzy logic, databases, evolutionary algorithms, shape and numerical analysis. Illustrates all theory with real-world examples and case studies. This valuable resource is essential reading for computer scientists, engineers, and consultants requiring up-to-date comprehensive guidance on the latest developments in computer-aided intelligent recognition techniques and applications. Its detailed, practical approach will be of interest to senior undergraduate and graduate students as well as researchers and industry experts in the field of intelligent recognition.