How to build low-cost, royalty-free embedded solutions with eCos, covers eCos architecture, installation, configuration, coding, debugging, bootstrapping, porting, and more, includes open source tools on CD-ROM for a complete embedded software development environment with eCos as the core.
Authored by two of the leading authorities in the field, this guide offers readers the knowledge and skills needed to achieve proficiency with embedded software.
If you have programming experience and a familiarity with C--the dominant language in embedded systems--Programming Embedded Systems, Second Edition is exactly what you need to get started with embedded software. This software is ubiquitous, hidden away inside our watches, DVD players, mobile phones, anti-lock brakes, and even a few toasters. The military uses embedded software to guide missiles, detect enemy aircraft, and pilot UAVs. Communication satellites, deep-space probes, and many medical instruments would have been nearly impossible to create without embedded software. The first edition of Programming Embedded Systems taught the subject to tens of thousands ofpeople around the world and is now considered the bible of embedded programming. This second edition has been updated to cover all the latest hardware designs and development methodologies. The techniques and code examples presented here are directly applicable to real-world embedded software projects of all sorts. Examples use the free GNU software programming tools, the eCos and Linux operating systems, and a low-cost hardware platform specially developed for this book. If you obtain these tools along withProgramming Embedded Systems, Second Edition, you'll have a full environment for exploring embedded systems in depth. But even if you work with different hardware and software, the principles covered in this bookapply. Whether you are new to embedded systems or have done embedded work before, you'll benefit from the topics in this book, which include: How building and loading programs differ from desktop or servercomputers Basic debugging techniques--a critical skill when working withminimally endowed embedded systems Handling different types of memory Interrupts, and the monitoring and control of on-chip and externalperipherals Determining whether you have real-time requirements, and whetheryour operating system and application can meet those requirements Task synchronization with real-time operating systems and embeddedLinux Optimizing embedded software for size, speed, and power consumption Working examples for eCos and embedded Linux So whether you're writing your first embedded program, designing thelatest generation of hand-held whatchamacalits, or managing the peoplewho do, this book is for you. Programming EmbeddedSystems will help you develop the knowledge and skills youneed to achieve proficiency with embedded software. Praise for the first edition: "This lively and readable book is the perfect introduction for those venturing into embedded systems software development for the first time. It provides in one place all the important topics necessary to orient programmers to the embedded development process. --Lindsey Vereen, Editor-in-Chief, Embedded Systems Programming
In this new edition the latest ARM processors and other hardware developments are fully covered along with new sections on Embedded Linux and the new freeware operating system eCOS. The hot topic of embedded systems and the internet is also introduced. In addition a fascinating new case study explores how embedded systems can be developed and experimented with using nothing more than a standard PC.* A practical introduction to the hottest topic in modern electronics design* Covers hardware, interfacing and programming in one book* New material on Embedded Linux for embedded internet systems
Embedded Firmware Solutions is the perfect introduction and daily-use field guide--for the thousands of firmware designers, hardware engineers, architects, managers, and developers--to Intel’s new firmware direction (including Quark coverage), showing how to integrate Intel® Architecture designs into their plans. Featuring hands-on examples and exercises using Open Source codebases, like Coreboot and EFI Development Kit (tianocore) and Chromebook, this is the first book that combines a timely and thorough overview of firmware solutions for the rapidly evolving embedded ecosystem with in-depth coverage of requirements and optimization.
This title covers all software-related aspects of SoC design, from embedded and application-domain specific operating systems to system architecture for future SoC. It will give embedded software designers invaluable insights into the constraints imposed by the use of embedded software in an SoC context.
This is the first edition of 'The Engineering of Reliable Embedded Systems': it is released here largely for historical reasons. (Please consider purchasing 'ERES2' instead.) [The second edition will be available for purchase here from June 2017.]
Based upon the authors' experience in designing and deploying an embedded Linux system with a variety of applications, Embedded Linux System Design and Development contains a full embedded Linux system development roadmap for systems architects and software programmers. Explaining the issues that arise out of the use of Linux in embedded systems, the book facilitates movement to embedded Linux from traditional real-time operating systems, and describes the system design model containing embedded Linux. This book delivers practical solutions for writing, debugging, and profiling applications and drivers in embedded Linux, and for understanding Linux BSP architecture. It enables you to understand: various drivers such as serial, I2C and USB gadgets; uClinux architecture and its programming model; and the embedded Linux graphics subsystem. The text also promotes learning of methods to reduce system boot time, optimize memory and storage, and find memory leaks and corruption in applications. This volume benefits IT managers in planning to choose an embedded Linux distribution and in creating a roadmap for OS transition. It also describes the application of the Linux licensing model in commercial products.
In this new, highly practical guide, expert embedded designer and manager Lewin Edwards answers the question, "How do I become an embedded engineer?” Embedded professionals agree that there is a treacherous gap between graduating from school and becoming an effective engineer in the workplace, and that there are few resources available for newbies to turn to when in need of advice and direction. This book provides that much-needed guidance for engineers fresh out of school, and for the thousands of experienced engineers now migrating into the popular embedded arena. This book helps new embedded engineers to get ahead quickly by preparing them for the technical and professional challenges they will face. Detailed instructions on how to achieve successful designs using a broad spectrum of different microcontrollers and scripting languages are provided. The author shares insights from a lifetime of experience spent in-the-trenches, covering everything from small vs. large companies, and consultancy work vs. salaried positions, to which types of training will prove to be the most lucrative investments. This book provides an expert's authoritative answers to questions that pop up constantly on Usenet newsgroups and in break rooms all over the world. * An approachable, friendly introduction to working in the world of embedded design * Full of design examples using the most common languages and hardware that new embedded engineers will be likely to use every day * Answers important basic questions on which are the best products to learn, trainings to get, and kinds of companies to work for
Until the late 1980s, information processing was associated with large mainframe computers and huge tape drives. During the 1990s, this trend shifted toward information processing with personal computers, or PCs. The trend toward miniaturization continues and in the future the majority of information processing systems will be small mobile computers, many of which will be embedded into larger products and interfaced to the physical environment. Hence, these kinds of systems are called embedded systems. Embedded systems together with their physical environment are called cyber-physical systems. Examples include systems such as transportation and fabrication equipment. It is expected that the total market volume of embedded systems will be significantly larger than that of traditional information processing systems such as PCs and mainframes. Embedded systems share a number of common characteristics. For example, they must be dependable, efficient, meet real-time constraints and require customized user interfaces (instead of generic keyboard and mouse interfaces). Therefore, it makes sense to consider common principles of embedded system design. Embedded System Design starts with an introduction into the area and a survey of specification models and languages for embedded and cyber-physical systems. It provides a brief overview of hardware devices used for such systems and presents the essentials of system software for embedded systems, like real-time operating systems. The book also discusses evaluation and validation techniques for embedded systems. Furthermore, the book presents an overview of techniques for mapping applications to execution platforms. Due to the importance of resource efficiency, the book also contains a selected set of optimization techniques for embedded systems, including special compilation techniques. The book closes with a brief survey on testing. Embedded System Design can be used as a text book for courses on embedded systems and as a source which provides pointers to relevant material in the area for PhD students and teachers. It assumes a basic knowledge of information processing hardware and software. Courseware related to this book is available at http://ls12-www.cs.tu-dortmund.de/~marwedel.