Embedded Memory Design for Multi-Core and Systems on Chip

Embedded Memory Design for Multi-Core and Systems on Chip

Author: Baker Mohammad

Publisher: Springer Science & Business Media

Published: 2013-10-22

Total Pages: 104

ISBN-13: 1461488818

DOWNLOAD EBOOK

This book describes the various tradeoffs systems designers face when designing embedded memory. Readers designing multi-core systems and systems on chip will benefit from the discussion of different topics from memory architecture, array organization, circuit design techniques and design for test. The presentation enables a multi-disciplinary approach to chip design, which bridges the gap between the architecture level and circuit level, in order to address yield, reliability and power-related issues for embedded memory.


Multi-Core Embedded Systems

Multi-Core Embedded Systems

Author: Georgios Kornaros

Publisher: CRC Press

Published: 2018-10-08

Total Pages: 502

ISBN-13: 1439811628

DOWNLOAD EBOOK

Details a real-world product that applies a cutting-edge multi-core architecture Increasingly demanding modern applications—such as those used in telecommunications networking and real-time processing of audio, video, and multimedia streams—require multiple processors to achieve computational performance at the rate of a few giga-operations per second. This necessity for speed and manageable power consumption makes it likely that the next generation of embedded processing systems will include hundreds of cores, while being increasingly programmable, blending processors and configurable hardware in a power-efficient manner. Multi-Core Embedded Systems presents a variety of perspectives that elucidate the technical challenges associated with such increased integration of homogeneous (processors) and heterogeneous multiple cores. It offers an analysis that industry engineers and professionals will need to understand the physical details of both software and hardware in embedded architectures, as well as their limitations and potential for future growth. Discusses the available programming models spread across different abstraction levels The book begins with an overview of the evolution of multiprocessor architectures for embedded applications and discusses techniques for autonomous power management of system-level parameters. It addresses the use of existing open-source (and free) tools originating from several application domains—such as traffic modeling, graph theory, parallel computing and network simulation. In addition, the authors cover other important topics associated with multi-core embedded systems, such as: Architectures and interconnects Embedded design methodologies Mapping of applications


Advanced Multicore Systems-On-Chip

Advanced Multicore Systems-On-Chip

Author: Abderazek Ben Abdallah

Publisher: Springer

Published: 2017-09-10

Total Pages: 292

ISBN-13: 9811060924

DOWNLOAD EBOOK

From basic architecture, interconnection, and parallelization to power optimization, this book provides a comprehensive description of emerging multicore systems-on-chip (MCSoCs) hardware and software design. Highlighting both fundamentals and advanced software and hardware design, it can serve as a primary textbook for advanced courses in MCSoCs design and embedded systems. The first three chapters introduce MCSoCs architectures, present design challenges and conventional design methods, and describe in detail the main building blocks of MCSoCs. Chapters 4, 5, and 6 discuss fundamental and advanced on-chip interconnection network technologies for multi and many core SoCs, enabling readers to understand the microarchitectures for on-chip routers and network interfaces that are essential in the context of latency, area, and power constraints. With the rise of multicore and many-core systems, concurrency is becoming a major issue in the daily life of a programmer. Thus, compiler and software development tools are critical in helping programmers create high-performance software. Programmers should make sure that their parallelized program codes will not cause race condition, memory-access deadlocks, or other faults that may crash their entire systems. As such, Chapter 7 describes a novel parallelizing compiler design for high-performance computing. Chapter 8 provides a detailed investigation of power reduction techniques for MCSoCs at component and network levels. It discusses energy conservation in general hardware design, and also in embedded multicore system components, such as CPUs, disks, displays and memories. Lastly, Chapter 9 presents a real embedded MCSoCs system design targeted for health monitoring in the elderly.


Multicore Systems On-Chip: Practical Software/Hardware Design

Multicore Systems On-Chip: Practical Software/Hardware Design

Author: Abderazek Ben Abdallah

Publisher: Springer Science & Business Media

Published: 2013-07-20

Total Pages: 291

ISBN-13: 9491216929

DOWNLOAD EBOOK

System on chips designs have evolved from fairly simple unicore, single memory designs to complex heterogeneous multicore SoC architectures consisting of a large number of IP blocks on the same silicon. To meet high computational demands posed by latest consumer electronic devices, most current systems are based on such paradigm, which represents a real revolution in many aspects in computing. The attraction of multicore processing for power reduction is compelling. By splitting a set of tasks among multiple processor cores, the operating frequency necessary for each core can be reduced, allowing to reduce the voltage on each core. Because dynamic power is proportional to the frequency and to the square of the voltage, we get a big gain, even though we may have more cores running. As more and more cores are integrated into these designs to share the ever increasing processing load, the main challenges lie in efficient memory hierarchy, scalable system interconnect, new programming paradigms, and efficient integration methodology for connecting such heterogeneous cores into a single system capable of leveraging their individual flexibility. Current design methods tend toward mixed HW/SW co-designs targeting multicore systems on-chip for specific applications. To decide on the lowest cost mix of cores, designers must iteratively map the device’s functionality to a particular HW/SW partition and target architectures. In addition, to connect the heterogeneous cores, the architecture requires high performance complex communication architectures and efficient communication protocols, such as hierarchical bus, point-to-point connection, or Network-on-Chip. Software development also becomes far more complex due to the difficulties in breaking a single processing task into multiple parts that can be processed separately and then reassembled later. This reflects the fact that certain processor jobs cannot be easily parallelized to run concurrently on multiple processing cores and that load balancing between processing cores – especially heterogeneous cores – is very difficult.


Real World Multicore Embedded Systems

Real World Multicore Embedded Systems

Author: Gitu Jain

Publisher: Elsevier Inc. Chapters

Published: 2013-02-27

Total Pages: 54

ISBN-13: 0128073381

DOWNLOAD EBOOK

Unlike general-purpose computing systems, multicore embedded systems are designed with a specific application in mind. The memory access patterns for the application can be used to customize the memory architecture of the device. This chapter presents a synopsis of memory types and architecture commonly used in multicore embedded systems. It examines the many trade-offs that can be considered when designing the memory architecture. It considers factors such as whether the memory should be shared or distributed among the multiple cores; will the cores benefit from memory cache and what should the cache configuration be; is there a cache coherency protocol used; should there be other memory types on the device such as scratch pad SRAMs and eDRAMs; does the device use a DMA for memory transfers, and other factors. It provides guidance to the embedded system designers to tailor the memory architecture to their needs.


Software Development for Embedded Multi-core Systems

Software Development for Embedded Multi-core Systems

Author: Max Domeika

Publisher: Newnes

Published: 2011-04-08

Total Pages: 435

ISBN-13: 0080558585

DOWNLOAD EBOOK

The multicore revolution has reached the deployment stage in embedded systems ranging from small ultramobile devices to large telecommunication servers. The transition from single to multicore processors, motivated by the need to increase performance while conserving power, has placed great responsibility on the shoulders of software engineers. In this new embedded multicore era, the toughest task is the development of code to support more sophisticated systems. This book provides embedded engineers with solid grounding in the skills required to develop software targeting multicore processors. Within the text, the author undertakes an in-depth exploration of performance analysis, and a close-up look at the tools of the trade. Both general multicore design principles and processor-specific optimization techniques are revealed. Detailed coverage of critical issues for multicore employment within embedded systems is provided, including the Threading Development Cycle, with discussions of analysis, design, development, debugging, and performance tuning of threaded applications. Software development techniques engendering optimal mobility and energy efficiency are highlighted through multiple case studies, which provide practical “how-to advice on implementing the latest multicore processors. Finally, future trends are discussed, including terascale, speculative multithreading, transactional memory, interconnects, and the software-specific implications of these looming architectural developments. This is the only book to explain software optimization for embedded multi-core systems Helpful tips, tricks and design secrets from an Intel programming expert, with detailed examples using the popular X86 architecture Covers hot topics, including ultramobile devices, low-power designs, Pthreads vs. OpenMP, and heterogeneous cores


Multicore Technology

Multicore Technology

Author: Muhammad Yasir Qadri

Publisher: CRC Press

Published: 2013-07-26

Total Pages: 492

ISBN-13: 1439880646

DOWNLOAD EBOOK

The saturation of design complexity and clock frequencies for single-core processors has resulted in the emergence of multicore architectures as an alternative design paradigm. Nowadays, multicore/multithreaded computing systems are not only a de-facto standard for high-end applications, they are also gaining popularity in the field of embedded computing. The start of the multicore era has altered the concepts relating to almost all of the areas of computer architecture design, including core design, memory management, thread scheduling, application support, inter-processor communication, debugging, and power management. This book gives readers a holistic overview of the field and guides them to further avenues of research by covering the state of the art in this area. It includes contributions from industry as well as academia.


Multicore Processors and Systems

Multicore Processors and Systems

Author: Stephen W. Keckler

Publisher: Springer Science & Business Media

Published: 2009-08-29

Total Pages: 310

ISBN-13: 1441902635

DOWNLOAD EBOOK

Multicore Processors and Systems provides a comprehensive overview of emerging multicore processors and systems. It covers technology trends affecting multicores, multicore architecture innovations, multicore software innovations, and case studies of state-of-the-art commercial multicore systems. A cross-cutting theme of the book is the challenges associated with scaling up multicore systems to hundreds of cores. The book provides an overview of significant developments in the architectures for multicore processors and systems. It includes chapters on fundamental requirements for multicore systems, including processing, memory systems, and interconnect. It also includes several case studies on commercial multicore systems that have recently been developed and deployed across multiple application domains. The architecture chapters focus on innovative multicore execution models as well as infrastructure for multicores, including memory systems and on-chip interconnections. The case studies examine multicore implementations across different application domains, including general purpose, server, media/broadband, network processing, and signal processing. Multicore Processors and Systems is the first book that focuses solely on multicore processors and systems, and in particular on the unique technology implications, architectures, and implementations. The book has contributing authors that are from both the academic and industrial communities.


System-on-Chip for Real-Time Applications

System-on-Chip for Real-Time Applications

Author: Wael Badawy

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 464

ISBN-13: 1461503515

DOWNLOAD EBOOK

System-on-Chip for Real-Time Applications will be of interest to engineers, both in industry and academia, working in the area of SoC VLSI design and application. It will also be useful to graduate and undergraduate students in electrical and computer engineering and computer science. A selected set of papers from the 2nd International Workshop on Real-Time Applications were used to form the basis of this book. It is organized into the following chapters: -Introduction; -Design Reuse; -Modeling; -Architecture; -Design Techniques; -Memory; -Circuits; -Low Power; -Interconnect and Technology; -MEMS. System-on-Chip for Real-Time Applications contains many signal processing applications and will be of particular interest to those working in that community.


Memory Issues in Embedded Systems-on-Chip

Memory Issues in Embedded Systems-on-Chip

Author: Preeti Ranjan Panda

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 200

ISBN-13: 1461551072

DOWNLOAD EBOOK

Memory Issues in Embedded Systems-On-Chip: Optimizations and Explorations is designed for different groups in the embedded systems-on-chip arena. First, it is designed for researchers and graduate students who wish to understand the research issues involved in memory system optimization and exploration for embedded systems-on-chip. Second, it is intended for designers of embedded systems who are migrating from a traditional micro-controllers centered, board-based design methodology to newer design methodologies using IP blocks for processor-core-based embedded systems-on-chip. Also, since Memory Issues in Embedded Systems-on-Chip: Optimization and Explorations illustrates a methodology for optimizing and exploring the memory configuration of embedded systems-on-chip, it is intended for managers and system designers who may be interested in the emerging capabilities of embedded systems-on-chip design methodologies for memory-intensive applications.