Embedded Instrumentation Systems Architecture

Embedded Instrumentation Systems Architecture

Author:

Publisher:

Published: 2009

Total Pages: 13

ISBN-13:

DOWNLOAD EBOOK

The objective of the Embedded Instrumentation Systems Architecture (EISA) initiative is to develop a comprehensive methodology for large-scale, nonintrusive, flexible data collection for test and evaluation needs. These needs include system-level developmental, operational, and continuous test and evaluation. The architecture can also be useful in monitoring, diagnostics, and health management, as well as protection in control applications. This article explains how EISA offers a metadata-driven methodology for heterogeneous data collection and aggregation in a synchronized and time-correlated fashion. It also describes how EISA supports real-time instrumentation and sensor management as well as virtual (synthetic) instrumentation. Finally, it addresses EISA scalability to System of Systems and/or Family of Systems embedded instrumentation applications.


Embedded Systems Architecture

Embedded Systems Architecture

Author: Tammy Noergaard

Publisher: Newnes

Published: 2012-12-31

Total Pages: 670

ISBN-13: 0123821975

DOWNLOAD EBOOK

Embedded Systems Architecture is a practical and technical guide to understanding the components that make up an embedded system’s architecture. This book is perfect for those starting out as technical professionals such as engineers, programmers and designers of embedded systems; and also for students of computer science, computer engineering and electrical engineering. It gives a much-needed ‘big picture’ for recently graduated engineers grappling with understanding the design of real-world systems for the first time, and provides professionals with a systems-level picture of the key elements that can go into an embedded design, providing a firm foundation on which to build their skills. Real-world approach to the fundamentals, as well as the design and architecture process, makes this book a popular reference for the daunted or the inexperienced: if in doubt, the answer is in here! Fully updated with new coverage of FPGAs, testing, middleware and the latest programming techniques in C, plus complete source code and sample code, reference designs and tools online make this the complete package Visit the companion web site at http://booksite.elsevier.com/9780123821966/ for source code, design examples, data sheets and more A true introductory book, provides a comprehensive get up and running reference for those new to the field, and updating skills: assumes no prior knowledge beyond undergrad level electrical engineering Addresses the needs of practicing engineers, enabling it to get to the point more directly, and cover more ground. Covers hardware, software and middleware in a single volume Includes a library of design examples and design tools, plus a complete set of source code and embedded systems design tutorial materials from companion website


Fast and Effective Embedded Systems Design

Fast and Effective Embedded Systems Design

Author: Tim Wilmshurst

Publisher: Elsevier

Published: 2012-07-03

Total Pages: 400

ISBN-13: 0080977693

DOWNLOAD EBOOK

Fast and Effective Embedded Systems Design is a fast-moving introduction to embedded system design, applying the innovative ARM mbed and its web-based development environment. Each chapter introduces a major topic in embedded systems, and proceeds as a series of practical experiments, adopting a "learning through doing" strategy. Minimal background knowledge is needed. C/C++ programming is applied, with a step-by-step approach which allows the novice to get coding quickly. Once the basics are covered, the book progresses to some "hot" embedded issues – intelligent instrumentation, networked systems, closed loop control, and digital signal processing. Written by two experts in the field, this book reflects on the experimental results, develops and matches theory to practice, evaluates the strengths and weaknesses of the technology or technique introduced, and considers applications and the wider context. Numerous exercises and end of chapter questions are included. A hands-on introduction to the field of embedded systems, with a focus on fast prototyping Key embedded system concepts covered through simple and effective experimentation Amazing breadth of coverage, from simple digital i/o, to advanced networking and control Applies the most accessible tools available in the embedded world Supported by mbed and book web sites, containing FAQs and all code examples Deep insights into ARM technology, and aspects of microcontroller architecture Instructor support available, including power point slides, and solutions to questions and exercises


From scientific instrument to industrial machine

From scientific instrument to industrial machine

Author: Richard Doornbos

Publisher: Springer Science & Business Media

Published: 2012-04-28

Total Pages: 116

ISBN-13: 9400741472

DOWNLOAD EBOOK

Architectural stress is the inability of a system design to respond to new market demands. It is an important yet often concealed issue in high tech systems. In From scientific instrument to industrial machine, we look at the phenomenon of architectural stress in embedded systems in the context of a transmission electron microscope system built by FEI Company. Traditionally, transmission electron microscopes are manually operated scientific instruments, but they also have enormous potential for use in industrial applications. However, this new market has quite different characteristics. There are strong demands for cost-effective analysis, accurate and precise measurements, and ease-of-use. These demands can be translated into new system qualities, e.g. reliability, predictability and high throughput, as well as new functions, e.g. automation of electron microscopic analyses, automated focusing and positioning functions. From scientific instrument to industrial machine takes a pragmatic approach to the problem of architectural stress. In particular, it describes the outcomes of the Condor project, a joint endeavour by a consortium of industrial and academic partners. In this collaboration an integrated approach was essential to successfully combine various scientific results and show the first steps towards a new direction. System modelling and prototyping were the key techniques to develop better understanding and innovative solutions to the problems associated with architectural stress. From scientific instruments to industrial machine is targeted mainly at industrial practitioners, in particular system architects and engineers working on high tech systems. It can therefore be read without particular knowledge of electron microscope systems or microscopic applications. The book forms a bridge between academic and applied science, and high tech industrial practice. By showing the approaches and solutions developed for the electron microscope, it is hoped that system designers will gain some insights in how to deal with architectural stress in similar challenges in the high tech industry.


On-Chip Instrumentation

On-Chip Instrumentation

Author: Neal Stollon

Publisher: Springer Science & Business Media

Published: 2010-12-06

Total Pages: 246

ISBN-13: 1441975632

DOWNLOAD EBOOK

This book provides an in-depth overview of on chip instrumentation technologies and various approaches taken in adding instrumentation to System on Chip (ASIC, ASSP, FPGA, etc.) design that are collectively becoming known as Design for Debug (DfD). On chip instruments are hardware based blocks that are added to a design for the specific purpose and improving the visibility of internal or embedded portions of the design (specific instruction flow in a processor, bus transaction in an on chip bus as examples) to improve the analysis or optimization capabilities for a SoC. DfD is the methodology and infrastructure that surrounds the instrumentation. Coverage includes specific design examples and discussion of implementations and DfD tradeoffs in a decision to design or select instrumentation or SoC that include instrumentation. Although the focus will be on hardware implementations, software and tools will be discussed in some detail.


Embedded Systems Design with the Texas Instruments MSP432 32-bit Processor

Embedded Systems Design with the Texas Instruments MSP432 32-bit Processor

Author: Dung Dang

Publisher: Springer Nature

Published: 2022-06-01

Total Pages: 545

ISBN-13: 3031798899

DOWNLOAD EBOOK

This book provides a thorough introduction to the Texas Instruments MPS432TM microcontroller. The MPS432 is a 32-bit processor with the ARM Cortex M4F architecture and a built-in floating point unit. At the core, the MSP432 features a 32-bit ARM Cortex-M4F CPU, a RISC-architecture processing unit that includes a built-in DSP engine and a floating point unit. As an extension of the ultra-low-power MSP microcontroller family, the MSP432 features ultra-low power consumption and integrated digital and analog hardware peripherals. The MSP432 is a new member to the MSP family. It provides for a seamless transition to applications requiring 32-bit processing at an operating frequency of up to 48 MHz. The processor may be programmed at a variety of levels with different programming languages including the user-friendly Energia rapid prototyping platform, in assembly language, and in C. A number of C programming options are also available to developers, starting with register-level access code where developers can directly configure the device's registers, to Driver Library, which provides a standardized set of application program interfaces (APIs) that enable software developers to quickly manipulate various peripherals available on the device. Even higher abstraction layers are also available, such as the extremely user-friendly Energia platform, that enables even beginners to quickly prototype an application on MSP432. The MSP432 LaunchPad is supported by a host of technical data, application notes, training modules, and software examples. All are encapsulated inside one handy package called MSPWare, available as both a stand-alone download package as well as on the TI Cloud development site: dev.ti.com The features of the MSP432 may be extended with a full line of BoosterPack plug-in modules. The MSP432 is also supported by a variety of third party modular sensors and software compiler companies. In the back, a thorough introduction to the MPS432 line of microcontrollers, programming techniques, and interface concepts are provided along with considerable tutorial information with many illustrated examples. Each chapter provides laboratory exercises to apply what has been presented in the chapter. The book is intended for an upper level undergraduate course in microcontrollers or mechatronics but may also be used as a reference for capstone design projects. Practicing engineers already familiar with another microcontroller, who require a quick tutorial on the microcontroller, will also find this book very useful. Finally, middle school and high school students will find the MSP432 highly approachable via the Energia rapid prototyping system.


Introduction to Embedded Systems, Second Edition

Introduction to Embedded Systems, Second Edition

Author: Edward Ashford Lee

Publisher: MIT Press

Published: 2017-01-06

Total Pages: 562

ISBN-13: 0262340526

DOWNLOAD EBOOK

An introduction to the engineering principles of embedded systems, with a focus on modeling, design, and analysis of cyber-physical systems. The most visible use of computers and software is processing information for human consumption. The vast majority of computers in use, however, are much less visible. They run the engine, brakes, seatbelts, airbag, and audio system in your car. They digitally encode your voice and construct a radio signal to send it from your cell phone to a base station. They command robots on a factory floor, power generation in a power plant, processes in a chemical plant, and traffic lights in a city. These less visible computers are called embedded systems, and the software they run is called embedded software. The principal challenges in designing and analyzing embedded systems stem from their interaction with physical processes. This book takes a cyber-physical approach to embedded systems, introducing the engineering concepts underlying embedded systems as a technology and as a subject of study. The focus is on modeling, design, and analysis of cyber-physical systems, which integrate computation, networking, and physical processes. The second edition offers two new chapters, several new exercises, and other improvements. The book can be used as a textbook at the advanced undergraduate or introductory graduate level and as a professional reference for practicing engineers and computer scientists. Readers should have some familiarity with machine structures, computer programming, basic discrete mathematics and algorithms, and signals and systems.


Architecture Exploration for Embedded Processors with LISA

Architecture Exploration for Embedded Processors with LISA

Author: Andreas Hoffmann

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 232

ISBN-13: 1475745389

DOWNLOAD EBOOK

Today more than 90% of all programmable processors are employed in embedded systems. The LISA processor design platform presented in this book addresses recent design challenges and results in highly satisfactory solutions, covering all major high-level phases of embedded processor design.


Embedded Systems Architecture

Embedded Systems Architecture

Author: Daniele Lacamera

Publisher: Packt Publishing Ltd

Published: 2018-05-30

Total Pages: 317

ISBN-13: 1788830288

DOWNLOAD EBOOK

Learn to design and develop safe and reliable embedded systems Key Features Identify and overcome challenges in embedded environments Understand the steps required to increase the security of IoT solutions Build safety-critical and memory-safe parallel and distributed embedded systems Book Description Embedded systems are self-contained devices with a dedicated purpose. We come across a variety of fields of applications for embedded systems in industries such as automotive, telecommunications, healthcare and consumer electronics, just to name a few. Embedded Systems Architecture begins with a bird's eye view of embedded development and how it differs from the other systems that you may be familiar with. You will first be guided to set up an optimal development environment, then move on to software tools and methodologies to improve the work flow. You will explore the boot-up mechanisms and the memory management strategies typical of a real-time embedded system. Through the analysis of the programming interface of the reference microcontroller, you'll look at the implementation of the features and the device drivers. Next, you'll learn about the techniques used to reduce power consumption. Then you will be introduced to the technologies, protocols and security aspects related to integrating the system into IoT solutions. By the end of the book, you will have explored various aspects of embedded architecture, including task synchronization in a multi-threading environment, and the safety models adopted by modern real-time operating systems. What you will learn Participate in the design and definition phase of an embedded product Get to grips with writing code for ARM Cortex-M microcontrollers Build an embedded development lab and optimize the workflow Write memory-safe code Understand the architecture behind the communication interfaces Understand the design and development patterns for connected and distributed devices in the IoT Master multitask parallel execution patterns and real-time operating systems Who this book is for If you’re a software developer or designer wanting to learn about embedded programming, this is the book for you. You’ll also find this book useful if you’re a less experienced embedded programmer willing to expand your knowledge.