Mathematical Models and Methods for Smart Materials

Mathematical Models and Methods for Smart Materials

Author: Mauro Fabrizio

Publisher: World Scientific

Published: 2002

Total Pages: 396

ISBN-13: 9812382356

DOWNLOAD EBOOK

This book contains the papers presented at the conference on "Mathematical Models and Methods for Smart Materials, " held in Italy in 2001. The papers are divided into four parts: "Methods in Materials Science" deals mainly with mathematical techniques fo the investigation of physical systems, such as liquid crystals, materials with internal variables, amorphous materials, and thermoelastic materials. Also, techniques are exhibited for the analysis of stability and controllability of classical models of continuum mechanics and of dynamical systems. "Modelling of Smart Materials" is devoted to models of superfluids, superconductors, materials with memory, nonlinear elastic solids, and damaged materials. In the elaboration of the models, thermodynamic aspects play a central role in the characterization of the constitutive properties. "Well-Posedness in Materials with Memory" deals with existence, uniqueness and stability for the solution of problems, most often expressed by integrodifferential equations, which involve materials with fading memory. Also, attention is given to exponential decay in viscoelasticity, inverse problems in heat conduction with memory, and automatic control for parabolic equations. "Analytic Problems in Phase Transitions" discusses nonlinear partial differential equations associated with phase transitions, and hysteresis, possibly involving fading memory effects. Particular applications are developed for the phase-field model with memory, the Stefan problem with a Cattaneo type equation, the hysteresis in thermo-visco plasticity, and the solid-solid phase transition. Contents: Automatic Control Problems for Integrodifferential Parabolic Equations (C Cavaterra);Phase Relaxation Problems with Memory and Their Optimal Control (P Colli); Unified Dynamics of Particles and Photons (G Ferrarese); Solid-Solid Phase Transition in a Mechanical System (G Gilardi); KAM Methods for Nonautonomous


Wave Factorization of Elliptic Symbols: Theory and Applications

Wave Factorization of Elliptic Symbols: Theory and Applications

Author: Vladimir B. Vasil'ev

Publisher: Springer Science & Business Media

Published: 2000-09-30

Total Pages: 192

ISBN-13: 9780792365310

DOWNLOAD EBOOK

This monograph is devoted to the development of a new approach to studying elliptic differential and integro-differential (pseudodifferential) equations and their boundary problems in non-smooth domains. This approach is based on a special representation of symbols of elliptic operators called wave factorization. In canonical domains, for example, the angle on a plane or a wedge in space, this yields a general solution, and then leads to the statement of a boundary problem. Wave factorization has also been used to obtain explicit formulas for solving some problems in diffraction and elasticity theory. Audience: This volume will be of interest to mathematicians, engineers, and physicists whose work involves partial differential equations, integral equations, operator theory, elasticity and viscoelasticity, and electromagnetic theory. It can also be recommended as a text for graduate and postgraduate students for courses in singular integral and pseudodifferential equations.


The obstacle problem

The obstacle problem

Author: Luis Angel Caffarelli

Publisher: Edizioni della Normale

Published: 1999-10-01

Total Pages: 0

ISBN-13: 9788876422492

DOWNLOAD EBOOK

The material presented here corresponds to Fermi lectures that I was invited to deliver at the Scuola Normale di Pisa in the spring of 1998. The obstacle problem consists in studying the properties of minimizers of the Dirichlet integral in a domain D of Rn, among all those configurations u with prescribed boundary values and costrained to remain in D above a prescribed obstacle F. In the Hilbert space H1(D) of all those functions with square integrable gradient, we consider the closed convex set K of functions u with fixed boundary value and which are greater than F in D. There is a unique point in K minimizing the Dirichlet integral. That is called the solution to the obstacle problem.


Differential Equations

Differential Equations

Author: O.A. Oleinik

Publisher: CRC Press

Published: 1996-02-09

Total Pages: 522

ISBN-13: 9782881249792

DOWNLOAD EBOOK

Part II of the Selected Works of Ivan Georgievich Petrowsky, contains his major papers on second order Partial differential equations, systems of ordinary. Differential equations, the theory, of Probability, the theory of functions, and the calculus of variations. Many of the articles contained in this book have Profoundly, influenced the development of modern mathematics. Of exceptional value is the article on the equation of diffusion with growing quantity of the substance. This work has found extensive application in biology, genetics, economics and other branches of natural science. Also of great importance is Petrowsky's work on a Problem which still remains unsolved - that of the number of limit cycles for ordinary differential equations with rational right-hand sides.


Differential Equations

Differential Equations

Author: Angelo Favini

Publisher: CRC Press

Published: 2006-06-09

Total Pages: 303

ISBN-13: 1420011138

DOWNLOAD EBOOK

With contributions from some of the leading authorities in the field, the work in Differential Equations: Inverse and Direct Problems stimulates the preparation of new research results and offers exciting possibilities not only in the future of mathematics but also in physics, engineering, superconductivity in special materials, and other scientifi


Partial Differential Equations IX

Partial Differential Equations IX

Author: M.S. Agranovich

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 287

ISBN-13: 3662067218

DOWNLOAD EBOOK

This EMS volume gives an overview of the modern theory of elliptic boundary value problems, with contributions focusing on differential elliptic boundary problems and their spectral properties, elliptic pseudodifferential operators, and general differential elliptic boundary value problems in domains with singularities.