This book provides an overview of the range of applications of induction heating with methods by which conventional as well as special heating jobs can be designed around the capabilities of the process.
The second edition of the Handbook of Induction Heating reflects the number of substantial advances that have taken place over the last decade in theory, computer modeling, semi-conductor power supplies, and process technology of induction heating and induction heat treating. This edition continues to be a synthesis of information, discoveries, and technical insights that have been accumulated at Inductoheat Inc. With an emphasis on design and implementation, the newest edition of this seminal guide provides numerous case studies, ready-to-use tables, diagrams, rules-of-thumb, simplified formulas, and graphs for working professionals and students.
Practical Induction Heat Treating, Second Edition is a quick reference source for induction heaters. This book ties-in the metallurgy, theory, and practice of induction heat treating from a hands-on explanation of what floor people need to know. This book includes practical tables and process analysis of induction heating.
This book offers a theoretical and practical treatment of both conduction and induction heating, comprising four parts: conduction theory, induction theory, heat flow, and practice.
The Encyclopedia of Thermal Stresses is an important interdisciplinary reference work. In addition to topics on thermal stresses, it contains entries on related topics, such as the theory of elasticity, heat conduction, thermodynamics, appropriate topics on applied mathematics, and topics on numerical methods. The Encyclopedia is aimed at undergraduate and graduate students, researchers and engineers. It brings together well established knowledge and recently received results. All entries were prepared by leading experts from all over the world, and are presented in an easily accessible format. The work is lavishly illustrated, examples and applications are given where appropriate, ideas for further development abound, and the work will challenge many students and researchers to pursue new results of their own. This work can also serve as a one-stop resource for all who need succinct, concise, reliable and up to date information in short encyclopedic entries, while the extensive references will be of interest to those who need further information. For the coming decade, this is likely to remain the most extensive and authoritative work on Thermal Stresses.
This book provides a comprehensive overview of the main electrical technologies for process heating, which tend to be treated separately in specialized books. Individual chapters focus on heat transfer, electromagnetic fields in electro-technologies, arc furnaces, resistance furnaces, direct resistance heating, induction heating, and high-frequency and microwave heating. The author highlights those topics of greatest relevance to a wide-ranging teaching program, and at the same time offer a detailed review of the main applications of the various technologies. The content represents a synthesis of the extensive knowledge and experience that the author has accumulated while researching and teaching at the University of Padua’s Engineering Faculty. This text on industrial electroheating technologies is a valuable resource not only for students of industrial, electrical, chemical, and material science engineering, but also for engineers, technicians and others involved in the application of electroheating and energy-efficient industrial processes.
Written by specialists of modeling in electromagnetism, this book provides a comprehensive review of the finite element method for low frequency applications. Fundamentals of the method as well as new advances in the field are described in detail. Chapters 1 to 4 present general 2D and 3D static and dynamic formulations by the use of scalar and vector unknowns and adapted interpolations for the fields (nodal, edge, face or volume). Chapter 5 is dedicated to the presentation of different macroscopic behavior laws of materials and their implementation in a finite element context: anisotropy and hysteretic properties for magnetic sheets, iron losses, non-linear permanent magnets and superconductors. More specific formulations are then proposed: the modeling of thin regions when finite elements become misfit (Chapter 6), infinite domains by using geometrical transformations (Chapter 7), the coupling of 2D and 3D formulations with circuit equations (Chapter 8), taking into account the movement, particularly in the presence of Eddy currents (Chapter 9) and an original approach for the treatment of geometrical symmetries when the sources are not symmetric (Chapter 10). Chapters 11 to 13 are devoted to coupled problems: magneto-thermal coupling for induction heating, magneto-mechanical coupling by introducing the notion of strong and weak coupling and magneto-hydrodynamical coupling focusing on electromagnetic instabilities in fluid conductors. Chapter 14 presents different meshing methods in the context of electromagnetism (presence of air) and introduces self-adaptive mesh refinement procedures. Optimization techniques are then covered in Chapter 15, with the adaptation of deterministic and probabilistic methods to the numerical finite element environment. Chapter 16 presents a variational approach of electromagnetism, showing how Maxwell equations are derived from thermodynamic principles.
This study of electroheat explores three main themes: electromagnetic heating (comprised of the direct resistance and induction heating of metals); radio frequency; and the microwave heating of dielectrics
What is heat treatment? This book describes heat treating technology in clear, concise, and nontheoretical language. It is an excellent introduction and guide for design and manufacturing engineers, technicians, students, and others who need to understand why heat treatment is specified and how different processes are used to obtain desired properties. The new Second Edition has been extensively updated and revised by Jon. L. Dossett, who has more than forty years of experience in theat treating operations and management. The update adds important information about new processes and process control techniques that have been developed or refined in recent years. Helpfull appendices have been added on decarburization of steels, boost/diffues cycles for carburizing, and process verification.