This book is a sequel to my Chemical Thermodynamics: A Prob lems Approach published in 1967, which concerned classical thermodynamics almost exclusively. Most books on statistical thermodynamics now available are written either for the superior general chemistry student or for the specialist. The author has felt the need for a text which would bring the intermediate reader to the point where he could not only appreciate the roots of the subject but also have some facility in calculating thermodynamic quantities. Although statistical thermodynamics comprises an essential part of the college training of a chemist, its treatment in general physical chem istry texts is, of necessity, compressed to the point where the less competent student is unable to appreciate or comprehend its logic and beauty, and is reduced to memorizing a series of formulas. It has been my aim to fill this need by writing a logical account of the foundations and applications of the sub ject at a level which can be grasped by an undergraduate who has had some exposure to calculus and to the basic concepts of classical thermodynamics. It can serve as a text or supple mentary reading for a course, or provide the means whereby one could become conversant with the subject on his own, without the benefit of an instructor.
This straightforward presentation emphasizes chemical applications of thermodynamics as well as physical interpretations, offering students an introduction that's both interesting and coherent. It considers chemical behavior in terms of energy and entropy, and it explains the ways in which the magnitude of energy and entropy changes are dictated by atomic properties. All concepts are presented in a simplified mathematical context, making this an ideal text for a beginning course in thermodynamics. The author considers the first and second laws of thermodynamics in turn, after which he proceeds to applications of thermodynamic principles. He devotes considerable attention to the concept of entropy, emphasizing the interpretation of entropy changes and chemical behavior in terms of qualitative molecular properties. Students gain a familiarity with the entropy concept that will form a solid foundation for later courses and more formal thermodynamic treatments.
Four-part treatment covers principles of quantum statistical mechanics, systems composed of independent molecules or other independent subsystems, and systems of interacting molecules, concluding with a consideration of quantum statistics.
Outstanding text focuses on physical technique of thermodynamics, typical problems, and significance and use of thermodynamic potential. Mathematical apparatus, first law of thermodynamics, second law and entropy, more. 1965 edition.
Introductory textbook introducing the concept of competition of entropy and energy with various examples. Thermodynamics textbook explaining the roles of entropy and energy as prime movers of nature.