Maintaining the reader-friendly features of its popular predecessor, the Second Edition illustrates fundamental principles and practices in statistical quality control for improved quality, reliability, and productivity in the management of production processes and industrial and business operations. Presenting key concepts of statistical quality c
A major tool for quality control and management, statistical process control (SPC) monitors sequential processes, such as production lines and Internet traffic, to ensure that they work stably and satisfactorily. Along with covering traditional methods, Introduction to Statistical Process Control describes many recent SPC methods that improve upon
This book focuses on statistical methods useful in quality control, emphasizing on data-analysis and decision-making. These techniques are also of great use in areas such as laboratory analyses and research. The problems and examples presented are from actual cases encountered in the industry.
"This book is about the use of modern statistical methods for quality control and improvement. It provides comprehensive coverage of the subject from basic principles to state-of-the-art concepts. and applications. The objective is to give the reader a sound understanding of the principles and the basis for applying them in a variety of situations. Although statistical techniques are emphasized. throughout, the book has a strong engineering and management orientation. Extensive knowledge. of statistics is not a prerequisite for using this book. Readers whose background includes a basic course in statistical methods will find much of the material in this book easily accessible"--
This undergraduate statistical quality assurance textbook clearly shows with real projects, cases and data sets how statistical quality control tools are used in practice. Among the topics covered is a practical evaluation of measurement effectiveness for both continuous and discrete data. Gauge Reproducibility and Repeatability methodology (including confidence intervals for Repeatability, Reproducibility and the Gauge Capability Ratio) is thoroughly developed. Process capability indices and corresponding confidence intervals are also explained. In addition to process monitoring techniques, experimental design and analysis for process improvement are carefully presented. Factorial and Fractional Factorial arrangements of treatments and Response Surface methods are covered. Integrated throughout the book are rich sets of examples and problems that help readers gain a better understanding of where and how to apply statistical quality control tools. These large and realistic problem sets in combination with the streamlined approach of the text and extensive supporting material facilitate reader understanding. Second Edition Improvements Extensive coverage of measurement quality evaluation (in addition to ANOVA Gauge R&R methodologies) New end-of-section exercises and revised-end-of-chapter exercises Two full sets of slides, one with audio to assist student preparation outside-of-class and another appropriate for professors’ lectures Substantial supporting material Supporting Material Seven R programs that support variables and attributes control chart construction and analyses, Gauge R&R methods, analyses of Fractional Factorial studies, Propagation of Error analyses and Response Surface analyses Documentation for the R programs Excel data files associated with the end-of-chapter problem sets, most from real engineering settings
This book, designed for students taking a basic introductory course in statistical analysis, is far more than just a book of tables. Each table is accompanied by a careful but concise explanation and useful worked examples. Requiring little mathematical background, Elementary Statistics Tables is thus not just a reference book but a positive and user-friendly teaching and learning aid. The new edition contains a new and comprehensive "teach-yourself" section on a simple but powerful approach, now well-known in parts of industry but less so in academia, to analysing and interpreting process data. This is a particularly valuable enabler to personnel who are not qualified in traditional statistical methods to actively contribute to quality-improvement projects. The second edition also includes a much-improved glossary of symbols and notation.
Like the first three volumes, published in 1981, 1984 and 1987 and met with a lively response, the present volume is collecting contributions stressed on methodology or successful industrial applications. The papers are classified under three main headings; sampling inspection, process quality control and experimental design. In the first group there are nine papers on acceptance sampling. The second large group of papers deal with control charts and process control and the third group of papers includes contributions on experimental design.
The main focus of this edited volume is on three major areas of statistical quality control: statistical process control (SPC), acceptance sampling and design of experiments. The majority of the papers deal with statistical process control, while acceptance sampling and design of experiments are also treated to a lesser extent. The book is organized into four thematic parts, with Part I addressing statistical process control. Part II is devoted to acceptance sampling. Part III covers the design of experiments, while Part IV discusses related fields. The twenty-three papers in this volume stem from The 11th International Workshop on Intelligent Statistical Quality Control, which was held in Sydney, Australia from August 20 to August 23, 2013. The event was hosted by Professor Ross Sparks, CSIRO Mathematics, Informatics and Statistics, North Ryde, Australia and was jointly organized by Professors S. Knoth, W. Schmid and Ross Sparks. The papers presented here were carefully selected and reviewed by the scientific program committee, before being revised and adapted for this volume.