Elementary Organic Spectroscopy

Elementary Organic Spectroscopy

Author: Y R Sharma

Publisher: S. Chand Publishing

Published: 2007

Total Pages: 356

ISBN-13: 8121928842

DOWNLOAD EBOOK

PRINCIPLES AND CHEMICAL APPLICATIONS FOR B.SC.(HONS) POST GRADUATE STUDENTS OF ALL INDIAN UNIVERSITIES AND COMPETITIVE EXAMINATIONS.


NMR Spectroscopy

NMR Spectroscopy

Author: Harald Günther

Publisher: John Wiley & Sons

Published: 2013-12-13

Total Pages: 842

ISBN-13: 3527674772

DOWNLOAD EBOOK

Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful and widely used techniques in chemical research for investigating structures and dynamics of molecules. Advanced methods can even be utilized for structure determinations of biopolymers, for example proteins or nucleic acids. NMR is also used in medicine for magnetic resonance imaging (MRI). The method is based on spectral lines of different atomic nuclei that are excited when a strong magnetic field and a radiofrequency transmitter are applied. The method is very sensitive to the features of molecular structure because also the neighboring atoms influence the signals from individual nuclei and this is important for determining the 3D-structure of molecules. This new edition of the popular classic has a clear style and a highly practical, mostly non-mathematical approach. Many examples are taken from organic and organometallic chemistry, making this book an invaluable guide to undergraduate and graduate students of organic chemistry, biochemistry, spectroscopy or physical chemistry, and to researchers using this well-established and extremely important technique. Problems and solutions are included.


Organic Spectroscopy

Organic Spectroscopy

Author: Jag Mohan

Publisher: CRC Press

Published: 2004-12

Total Pages: 576

ISBN-13: 9780849339523

DOWNLOAD EBOOK

Though the format evolved in the first edition remains intact, relevant new additions have been inserted at appropriate places in various chapters of the book. Also included are a number of sample and study problems at the end of each chapter to illustrate the approach to problem solving that involve translations of sets of spectra into chemical structures. Written primarily to stimulate the interest of students in spectroscopy and make them aware of the latest developments in this field, this book begins with a general introduction to electromagnetic radiation and molecular spectroscopy. In addition to the usual topics on IR, UV, NMR and Mass spectrometry, it includes substantial material on the currently useful techniques such as FT-IR, FT-NMR 13C-NMR, 2D-NMR, GC/MS, FAB/MS, Tendem and Negative Ion Mass Spectrometry for students engaged in advanced studies. Finally it gives a detailed account on Optical Rotatory Dispersion (ORD) and Circular Dichroism (CD).


Organic Structural Spectroscopy

Organic Structural Spectroscopy

Author: Joseph B. Lambert

Publisher:

Published: 1998

Total Pages: 584

ISBN-13:

DOWNLOAD EBOOK

Appropriate for courses in organic spectroscopy or organic spectroscopic techniques in senior undergraduate and graduate programs. This text authoritatively covers currently used techniques for determining the structure of organic and biological compounds ideal for any practicing or future organic or biochemist. The fundamentals of all four principal spectroscopic methods are covered in depth, each by an experienced author who is a practicing expert in that area. The material is easy to grasp, beginning at the most elementary level and progressing to the level required for organic research. Highlights include the most thorough and current treatment of NMR available, ample problem material, and two new chapters devoted to multiple pulse and two-dimensional methods.


Organic Structural Spectroscopy

Organic Structural Spectroscopy

Author: Joseph B. Lambert

Publisher: Pearson

Published: 2013-11-01

Total Pages: 464

ISBN-13: 9781292039565

DOWNLOAD EBOOK

Chapter 1 Introduction 1-1 The Spectroscopic Approach to Structure Determination 1-2 Contributions of Different Forms of Spectroscopy 1-3 The Electromagnetic Spectrum 1-4 Molecular Weight and Molecular Formula 1-5 Structural Isomers and Stereoisomers Problems Part I NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY Chapter 2 Introduction 2-1 Magnetic Properties of Nuclei 2-2 The Chemical Shift 2-3 Excitation and Relaxation 2-4 Pulsed Experiments 2-5 The Coupling Constant 2-6 Quantification and Complex Splitting 2-7 Commonly Studied Nuclides 2-8 Dynamic Effects 2-9 Spectra of Solids 2-10 Experimental Methods Problems Tips on Solving NMR Problems Bibliography Chapter 3 The Chemical Shift 3-1 Factors That Influence Proton Shifts 3-2 Proton Chemical Shifts and Structure 3-3 Medium and Isotope Effects 3-4 Factors That Influence Carbon Shirts 3-5 Carbon Chemical Shifts and Structure 3-6 Tables of Chemical Shifts Problems Further Tips on Solving NMR Problems Bibliography Chapter 4 The Coupling Constant 4-1 First-Order Spectra 4-2 Chemical and Magnetic Equivalence 4-3 Signs and Mechanisms 4-4 Couplings over One Bond 4-5 Geminal Couplings 4-6 Vicinal Couplings 4-7 Long-Range Couplings 4-8 Spectral Analysis 4-9 Second-Order Spectra 4-10 Tables of Coupling Constants Problems Bibliography Chapter 5 Further Topics in One-Dimensional NMR 5-1 Spin-Lattice and Spin-Spin Relaxation 5-2 Reactions on the NMR Time Scale 5-3 Multiple Resonance 5-4 The Nuclear Overhauser Effect 5-5 Spectral Editing 5-6 Sensitivity Enhancement 5-7 Carbon Connectivity 5-8 Phase Cycling, Composite Pulses, and Shaped Pulses Problems Bibliography Chapter 6 Two-Dimensional NMR 6-1 Proton-Proton Correlation Through Coupling 6-2 Proton-Heteronucleus Correlation 6-3 Proton-Proton Correlation Through Space or Chemical Exchange 6-4 Carbon-Carbon Correlation 6-5 Higher Dimensions 6-6 Pulsed Field Gradients 6-7 Summary of Two-Dimensional Methods Problems Bibliography Part II MASS SPECTROMETRY Chapter 7 Instrumentation and Theory 7-1 Introduction 7-2 Ionization Methods 7-3 Mass Analysis 7-4 Sample Preparation Chapter 8 Ion Activation and Fragmentation 8-1 Basic Principles 8-2 Methods and Energetics 8-3 Functional Groups Chapter 9 Structural Analysis 9-1 Molecular Weights 9-2 Molecular Formula 9-3 Structures from Fragmentation Patterns 9-4 Polymers Chapter 10 Quantitative Applications 10-1 Quantification of Analytes 10-2 Thermochemistry Part III VIBRATIONAL SPECTROSCOPY Chapter 11 Introduction 11-1 Introduction 11-2 Vibrations of Molecules 11-3 Infrared and Raman Spectra 11-4 Units and Notation 11-5 Infrared Spectra: Dispersive and Fourier Transform 11-6 Sampling Methods for Infrared Transmission Spectra 11-7 Raman Spectroscopy 11-8 Raman Sampling Methods 11-9 Depolarization Measurements 11-10 Infrared Reflection Spectroscopy Problems Bibliography Chapter 12 Group Frequencies 12-1 Introduction 12-2 Factors Affecting Group Frequencies 12-3 Infrared Group Frequencies 12-4 Raman Group Frequencies 12-5 Preliminary Analysis 12-6 The CH Stretching Region (3340-2700 cm-1) 12-7 The Carbonyl Stretching Region (1850-1650 cm-1) 12-8 Aromatic Compounds 12-9 Compounds Containing Methyl Groups 12-10 Compounds Containing Methylene Groups 12-11 Unsaturated Compounds 12-12 Compounds Containing Oxygen 12-13 Compounds Containing Nitrogen 12-14 Compounds Containing Phosphorus and Sulfur 12-15 Heterocyclic Compounds 12-16 Compounds Containing Halogens 12-17 Boron, Silicon, Tin, Lead, and Mercury Compounds 12-18 Isotopically Labeled Compounds 12-19 Using the Literature on Vibrational Spectroscopy Problems Bibliography Part IV ELECTRONIC ABSORPTION SPECTROSCOPY Chapter 13 Introduction and Experimental Methods 13-1 Introduction 13-2 Measurement of Ultraviolet-Visible Light Absorption 13-3 Quantitative Measurements 13-4 Electronic Transitions 13-5 Experimental Aspects Problems Bibliography Chapter 14 Structural Analysis 14-1 Isolated Chromophores 14-2 Conjugated Chromophores 14-3 Aromatic Compounds 14-4 Important Naturally Occurring Chromophores 14-5 The Woodward-Fieser Rules 14-6 Steric Effects 14-7 Solvent Effects and Dynamic Equilibria 14-8 Hydrogen Bonding Studies 14-9 Homoconjugation 14-10 Charge Transfer Band 14-11 Worked Problems Problems Bibliography Chapter 15 Integrated Problems


Photochemistry And Pericyclic Reactions

Photochemistry And Pericyclic Reactions

Author: J. Singh

Publisher: New Age International

Published: 2005

Total Pages: 17

ISBN-13: 8122416942

DOWNLOAD EBOOK

This Book Is Especially Designed According To The Model Curriculum Of M.Sc. (Prev.) (Pericyclic Reactions) And M.Sc. (Final) (Photochemistry Compulsory Paper Viii) Suggested By The University Grants Commission, New Delhi. As Far As The Ugc Model Curriculum Is Concerned, Most Of The Indian Universities Have Already Adopted It And The Others Are In The Process Of Adopting The Proposed Curriculum. In The Present Academic Scenario, We Strongly Felt That A Comprehensive Book Covering Modern Topics Like Pericyclic Reactions And Photochemistry Of The Ugc Model Curriculum Was Urgently Needed. This Book Is A Fruitful Outcome Of Our Aforesaid Strong Feeling. Besides M.Sc. Students, This Book Will Also Be Very Useful To Those Students Who Are Preparing For The Net (Csir), Slet, Ias, Pcs And Other Competitive Examinations.The Subject Matter Has Been Presented In A Comprehensive, Lucid And Systematic Manner Which Is Easy To Understand Even By Self Study. The Authors Believe That Learning By Solving Problems Gives More Competence And Confidence In The Subject. Keeping This In View, Sufficiently Large Number Of Varied Problems For Self Assessment Are Given In Each Chapter. Hundred Plus Problems With Solutions In The Last Chapter Is An Important Feature Of This Book.


Organic Structures from Spectra

Organic Structures from Spectra

Author: L. D. Field

Publisher:

Published: 1995-12-26

Total Pages: 304

ISBN-13:

DOWNLOAD EBOOK

Offers a realistic approach to solving problems used by organic chemists. Covering all the major spectroscopic techniques, it provides a graded set of problems that develop and consolidate students' understanding of organic spectroscopy. This edition contains more elementary problems and a modern approach to NMR spectra.


Organic Spectroscopy

Organic Spectroscopy

Author: Lal Dhar Singh Yadav

Publisher: Springer Science & Business Media

Published: 2013-08-30

Total Pages: 334

ISBN-13: 1402025750

DOWNLOAD EBOOK

Organic Spectroscopy presents the derivation of structural information from UV, IR, Raman, 1H NMR, 13C NMR, Mass and ESR spectral data in such a way that stimulates interest of students and researchers alike. The application of spectroscopy for structure determination and analysis has seen phenomenal growth and is now an integral part of Organic Chemistry courses. This book provides: -A logical, comprehensive, lucid and accurate presentation, thus making it easy to understand even through self-study; -Theoretical aspects of spectral techniques necessary for the interpretation of spectra; -Salient features of instrumentation involved in spectroscopic methods; -Useful spectral data in the form of tables, charts and figures; -Examples of spectra to familiarize the reader; -Many varied problems to help build competence ad confidence; -A separate chapter on ‘spectroscopic solutions of structural problems’ to emphasize the utility of spectroscopy. Organic Spectroscopy is an invaluable reference for the interpretation of various spectra. It can be used as a basic text for undergraduate and postgraduate students of spectroscopy as well as a practical resource by research chemists. The book will be of interest to chemists and analysts in academia and industry, especially those engaged in the synthesis and analysis of organic compounds including drugs, drug intermediates, agrochemicals, polymers and dyes.