60 Years Of Cern Experiments And Discoveries

60 Years Of Cern Experiments And Discoveries

Author: Herwig Schopper

Publisher: World Scientific

Published: 2015-07-13

Total Pages: 452

ISBN-13: 9814644161

DOWNLOAD EBOOK

The book is a compilation of the most important experimental results achieved during the past 60 years at CERN - from the mid-1950s to the latest discovery of the Higgs particle. Covering the results from the early accelerators at CERN to those most recent at the LHC, the contents provide an excellent review of the achievements of this outstanding laboratory. Not only presented is the impressive scientific progress achieved during the past six decades, but also demonstrated is the special way in which successful international collaboration exists at CERN.


Radiative Corrections for e+e- Collisions

Radiative Corrections for e+e- Collisions

Author: Johann H. Kühn

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 351

ISBN-13: 3642749259

DOWNLOAD EBOOK

In recent years the Standard Model of electroweak interactions has successfully passed a number of crucial tests, most notably in neutral current reactions and through the observation of W- and Z-bosons in proton-antiproton collisions. How ever, experiments are only beginning to verify one of the most basic consequences of its theoretical formulation as a local quantum field theory: quantum corrections as calculated in perturbation theory. Measurements that will be carried out at electron positron colliders at Stanford and CERN in the very near future will improve the accuracy by more than an order of magnitude. Thus either these crucial elements of the present theoretical framework will be confirmed or the road to physics beyond the Standard Model will be opened. A huge amount of theoretical work has been invested during the past few years to match the envisaged experimental precision. QED corrections, in particular from initial state radiation, will playa dominant role in the interpretation of measurements and have to be understood at a hitherto unrivalled level of accuracy. Analytical cal culations - either to a fixed order in a or by summing large logarithms to arbitrary order - are complementary to recent developments of Monte Carlo techniques in the simulation of events with multiple photon emission. Measurements with hadronic final states evidently require the understanding of hadronic corrections to high accu racy. Even purely leptonic reactions are influenced by hadronic interactions through vacuum polarization.


Electroweak Symmetry And Its Breaking

Electroweak Symmetry And Its Breaking

Author: Regina Demina

Publisher: World Scientific

Published: 2023-03-16

Total Pages: 234

ISBN-13: 9811222266

DOWNLOAD EBOOK

Fundamental interactions are mediated by bosonic fields, quanta of which are realized as particles. The properties of these fields typically obey certain symmetry rules. In this book we discuss the symmetry between two types of interactions — electromagnetic, which are familiar to anyone who turned on the electric lights, and weak, which govern the nuclear reactions that fuel the Sun. While there is a symmetry between these two types of interactions, it is broken. The unified theory of electroweak interactions was developed over 50 years ago. The Higgs scalar field named after one of the theorists that proposed it, is believed to be responsible for the breaking of the electroweak symmetry. Yet, it is only now after the discovery of the Higgs boson in 2012 by the LHC experiments, that we can study the mechanism of the electroweak symmetry breaking. This book discusses the theoretical developments that led to the construction of this theory, the discovery and the experimental observations that need to come to fully establish the validity of the model.


Search for New Heavy Charged Bosons and Measurement of High-Mass Drell-Yan Production in Proton—Proton Collisions

Search for New Heavy Charged Bosons and Measurement of High-Mass Drell-Yan Production in Proton—Proton Collisions

Author: Markus Zinser

Publisher: Springer

Published: 2018-09-25

Total Pages: 386

ISBN-13: 3030006506

DOWNLOAD EBOOK

This book presents two analyses, the first of which involves the search for a new heavy charged gauge boson, a so-called W' boson. This new gauge boson is predicted by some theories extending the Standard Model gauge group to solve some of its conceptual problems. Decays of the W' boson in final states with a lepton (l± = e± , μ±) and the corresponding (anti-)neutrino are considered. Data collected by the ATLAS experiment in 2015 at a center of mass energy of √s =13 TeV is used for the analysis. In turn, the second analysis presents a measurement of the double-differential cross section of the process pp->Z/gamma^* + X -> l^+l^- + X, including a gamma gamma induced contribution, at a center of mass energy of sqrt{s} = 8 TeV. The measurement is performed in an invariant mass region of 116 GeV to 1500 GeV as a function of invariant mass and absolute rapidity of the l^+l^-- pair, and as a function of invariant mass and pseudorapidity separation of the l^+l^-- pair. The data analyzed was recorded by the ATLAS experiment in 2012 and corresponds to an integrated luminosity of 20.3/fb. It is expected that the measured cross sections are sensitive to the PDFs at very high values of the Bjorken-x scaling variable, and to the photon structure of the proton.


Looking Inside Jets

Looking Inside Jets

Author: Simone Marzani

Publisher: Springer

Published: 2019-05-11

Total Pages: 210

ISBN-13: 3030157091

DOWNLOAD EBOOK

This concise primer reviews the latest developments in the field of jets. Jets are collinear sprays of hadrons produced in very high-energy collisions, e.g. at the LHC or at a future hadron collider. They are essential to and ubiquitous in experimental analyses, making their study crucial. At present LHC energies and beyond, massive particles around the electroweak scale are frequently produced with transverse momenta that are much larger than their mass, i.e., boosted. The decay products of such boosted massive objects tend to occupy only a relatively small and confined area of the detector and are observed as a single jet. Jets hence arise from many different sources and it is important to be able to distinguish the rare events with boosted resonances from the large backgrounds originating from Quantum Chromodynamics (QCD). This requires familiarity with the internal properties of jets, such as their different radiation patterns, a field broadly known as jet substructure. This set of notes begins by providing a phenomenological motivation, explaining why the study of jets and their substructure is of particular importance for the current and future program of the LHC, followed by a brief but insightful introduction to QCD and to hadron-collider phenomenology. The next section introduces jets as complex objects constructed from a sequential recombination algorithm. In this context some experimental aspects are also reviewed. Since jet substructure calculations are multi-scale problems that call for all-order treatments (resummations), the bases of such calculations are discussed for simple jet quantities. With these QCD and jet physics ingredients in hand, readers can then dig into jet substructure itself. Accordingly, these notes first highlight the main concepts behind substructure techniques and introduce a list of the main jet substructure tools that have been used over the past decade. Analytic calculations are then provided for several families of tools, the goal being to identify their key characteristics. In closing, the book provides an overview of LHC searches and measurements where jet substructure techniques are used, reviews the main take-home messages, and outlines future perspectives.


Hadron Collider Physics 2005

Hadron Collider Physics 2005

Author: Mario Campanelli

Publisher: Springer Science & Business Media

Published: 2007-08-17

Total Pages: 360

ISBN-13: 3540328416

DOWNLOAD EBOOK

This book gathers the proceedings of The Hadron Collider Physics Symposia (HCP) 2005, and reviews the state-of-the-art in the key physics directions of experimental hadron collider research. Topics include QCD physics, precision electroweak physics, c-, b-, and t-quark physics, physics beyond the Standard Model, and heavy ion physics. The present volume serves as a reference for everyone working in the field of accelerator-based high-energy physics.


Foundations of Perturbative QCD

Foundations of Perturbative QCD

Author: John Collins

Publisher: Cambridge University Press

Published: 2011-04-28

Total Pages: 637

ISBN-13: 1139500627

DOWNLOAD EBOOK

Giving an accurate account of the concepts, theorems and their justification, this book is a systematic treatment of perturbative QCD. It relates the concepts to experimental data, giving strong motivations for the methods. Ideal for graduate students starting their work in high-energy physics, it will also interest experienced researchers.


High-Precision W-Boson Studies with LHCb

High-Precision W-Boson Studies with LHCb

Author: Ross Hunter

Publisher: Springer Nature

Published: 2024-01-02

Total Pages: 179

ISBN-13: 3031497031

DOWNLOAD EBOOK

This book details a new and ground-breaking contribution to the search for a successor to the Standard Model (SM) of particle physics - the largest modern endeavour in the field. In the hope of seeing a discrepancy with the SM's predictions, this work discusses two hitherto unforeseen measurements at the frontier of experimental precision: a measurement of W-boson mass and a test of the fundamental axiom of the W boson's lepton flavour universality (LFU). Both measurements are made by analysing collision data from the LHCb experiment at the Large Hadron Collider (LHC) at CERN, and represent the establishment of a new field of high-precision Standard Model tests with LHCb. This book also describes the development of new software tools for the optimisation of the LHCb trigger system, which helps to ensure that LHCb's exciting physics program can continue to prosper into the future. This book is accessible to those with graduate—or master's—level training in experimental particle physics.