Low-Dimensional Semiconductor Structures

Low-Dimensional Semiconductor Structures

Author: Keith Barnham

Publisher: Cambridge University Press

Published: 2008-12-11

Total Pages: 408

ISBN-13: 9780521599047

DOWNLOAD EBOOK

Low-Dimensional Semiconductor Structures offers a seamless, atoms-to-devices introduction to the latest quantum heterostructures. It covers their fabrication; electronic, optical, and transport properties; role in exploring new physical phenomena; and utilization in devices. The authors describe the epitaxial growth of semiconductors and the physical behavior of electrons and phonons in low-dimensional structures. They then go on to discuss nonlinear optics in quantum heterostructures. The final chapters deal with semiconductor lasers, mesoscopic devices, and high-speed heterostructure devices. The book contains many exercises and comprehensive references.


Low-Dimensional Semiconductor Structures

Low-Dimensional Semiconductor Structures

Author: Keith Barnham

Publisher: Cambridge University Press

Published: 2008-12-11

Total Pages: 408

ISBN-13: 9780521599047

DOWNLOAD EBOOK

Low-Dimensional Semiconductor Structures offers a seamless, atoms-to-devices introduction to the latest quantum heterostructures. It covers their fabrication; electronic, optical, and transport properties; role in exploring new physical phenomena; and utilization in devices. The authors describe the epitaxial growth of semiconductors and the physical behavior of electrons and phonons in low-dimensional structures. They then go on to discuss nonlinear optics in quantum heterostructures. The final chapters deal with semiconductor lasers, mesoscopic devices, and high-speed heterostructure devices. The book contains many exercises and comprehensive references.


Electron-phonon Interactions in Low-dimensional Structures

Electron-phonon Interactions in Low-dimensional Structures

Author: Lawrence John Challis

Publisher:

Published: 2003

Total Pages: 302

ISBN-13: 9780198507321

DOWNLOAD EBOOK

The study of electrons and holes confined to two, one and even zero dimensions has uncovered a rich variety of new physics and applications. This book describes the interaction between these confined carriers and the optic and acoustic phonons within and around the confined regions. Phonons provide the principal channel of energy transfer between the carriers and their surroundings and also the main restriction to their room temperature mobility. But they have many other roles; they provide, for example, an essential feature of the operation of the quantum cascade laser. Since their momenta at relevant energies are well matched to those of electrons, they can also be used to probe electronic properties such as the confinement width of 2D electron gases and the dispersion curve of quasiparticles in the fractional quantum Hall effect. The book describes both the physics of the electron-phonon interaction in the different confined systems and the experimental and theoretical techniques that have been used in its investigation. The experimental methods include optical and transport techniques as well as techniques in which phonons are used as the experimental probe. The aim of the book is to provide an up to date review of the physics and its significance in device performance. It is also written to be explanatory and accessible to graduate students and others new to the field.


Phonons in Low Dimensional Structures

Phonons in Low Dimensional Structures

Author: Vasilios N. Stavrou

Publisher: BoD – Books on Demand

Published: 2018-12-12

Total Pages: 176

ISBN-13: 1789846269

DOWNLOAD EBOOK

The field of low-dimensional structures has been experiencing rapid development in both theoretical and experimental research. Phonons in Low Dimensional Structures is a collection of chapters related to the properties of solid-state structures dependent on lattice vibrations. The book is divided into two parts. In the first part, research topics such as interface phonons and polaron states, carrier-phonon non-equilibrium dynamics, directional projection of elastic waves in parallel array of N elastically coupled waveguides, collective dynamics for longitudinal and transverse phonon modes, and elastic properties for bulk metallic glasses are related to semiconductor devices and metallic glasses devices. The second part of the book contains, among others, topics related to superconductor, phononic crystal carbon nanotube devices such as phonon dispersion calculations using density functional theory for a range of superconducting materials, phononic crystal-based MEMS resonators, absorption of acoustic phonons in the hyper-sound regime in fluorine-modified carbon nanotubes and single-walled nanotubes, phonon transport in carbon nanotubes, quantization of phonon thermal conductance, and phonon Anderson localization.


Physics of Low-Dimensional Semiconductor Structures

Physics of Low-Dimensional Semiconductor Structures

Author: Paul N. Butcher

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 597

ISBN-13: 1489924159

DOWNLOAD EBOOK

Presenting the latest advances in artificial structures, this volume discusses in-depth the structure and electron transport mechanisms of quantum wells, superlattices, quantum wires, and quantum dots. It will serve as an invaluable reference and review for researchers and graduate students in solid-state physics, materials science, and electrical and electronic engineering.


Physics of Low-Dimensional Semiconductor Structures

Physics of Low-Dimensional Semiconductor Structures

Author: Paul N. Butcher

Publisher: Springer

Published: 2013-06-26

Total Pages: 588

ISBN-13: 9781489924179

DOWNLOAD EBOOK

Presenting the latest advances in artificial structures, this volume discusses in-depth the structure and electron transport mechanisms of quantum wells, superlattices, quantum wires, and quantum dots. It will serve as an invaluable reference and review for researchers and graduate students in solid-state physics, materials science, and electrical and electronic engineering.


The Physics of Low-dimensional Semiconductors

The Physics of Low-dimensional Semiconductors

Author: John H. Davies

Publisher: Cambridge University Press

Published: 1998

Total Pages: 460

ISBN-13: 9780521484916

DOWNLOAD EBOOK

The composition of modern semiconductor heterostructures can be controlled precisely on the atomic scale to create low-dimensional systems. These systems have revolutionised semiconductor physics, and their impact on technology, particularly for semiconductor lasers and ultrafast transistors, is widespread and burgeoning. This book provides an introduction to the general principles that underlie low-dimensional semiconductors. As far as possible, simple physical explanations are used, with reference to examples from actual devices. The author shows how, beginning with fundamental results from quantum mechanics and solid-state physics, a formalism can be developed that describes the properties of low-dimensional semiconductor systems. Among numerous examples, two key systems are studied in detail: the two-dimensional electron gas, employed in field-effect transistors, and the quantum well, whose optical properties find application in lasers and other opto-electronic devices. The book includes many exercises and will be invaluable to undergraduate and first-year graduate physics or electrical engineering students taking courses in low-dimensional systems or heterostructure device physics.