Charge Dynamics in Organic Semiconductors

Charge Dynamics in Organic Semiconductors

Author: Pascal Kordt

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2016-09-12

Total Pages: 202

ISBN-13: 3110473631

DOWNLOAD EBOOK

In the field of organic semiconductors researchers and manufacturers are faced with a wide range of potential molecules. This work presents concepts for simulation-based predictions of material characteristics starting from chemical stuctures. The focus lies on charge transport – be it in microscopic models of amorphous morphologies, lattice models or large-scale device models. An extensive introductory review, which also includes experimental techniques, makes this work interesting for a broad readership. Contents: Organic Semiconductor Devices Experimental Techniques Charge Dynamics at Dierent Scales Computational Methods Energetics and Dispersive Transport Correlated Energetic Landscapes Microscopic, Stochastic and Device Simulations Parametrization of Lattice Models Drift–Diusion with Microscopic Link


Physics of Organic Semiconductors

Physics of Organic Semiconductors

Author: Wolfgang Brütting

Publisher: John Wiley & Sons

Published: 2012-10-02

Total Pages: 660

ISBN-13: 3527654968

DOWNLOAD EBOOK

The field of organic electronics has seen a steady growth over the last 15 years. At the same time, our scientific understanding of how to achieve optimum device performance has grown, and this book gives an overview of our present-day knowledge of the physics behind organic semiconductor devices. Based on the very successful first edition, the editors have invited top scientists from the US, Japan, and Europe to include the developments from recent years, covering such fundamental issues as: - growth and characterization of thin films of organic semiconductors, - charge transport and photophysical properties of the materials as well as their electronic structure at interfaces, and - analysis and modeling of devices like organic light-emitting diodes or organic lasers. The result is an overview of the field for both readers with basic knowledge and for an application-oriented audience. It thus bridges the gap between textbook knowledge largely based on crystalline molecular solids and those books focusing more on device applications.


Molecular Dynamics and Charge Transport in Organic Semiconductors

Molecular Dynamics and Charge Transport in Organic Semiconductors

Author:

Publisher:

Published: 2017

Total Pages: 13

ISBN-13:

DOWNLOAD EBOOK

Organic photovoltaics (OPVs) are a promising carbon-neutral energy conversion technology, with recent improvements pushing power conversion efficiencies over 10%. A major factor limiting OPV performance is inefficiency of charge transport in organic semiconducting materials (OSCs). Due to strong coupling with lattice degrees of freedom, the charges form polarons, localized quasi-particles comprised of charges dressed with phonons. These polarons can be conceptualized as pseudo-atoms with a greater effective mass than a bare charge. Here we propose that due to this increased mass, polarons can be modeled with Langevin molecular dynamics (LMD), a classical approach with a computational cost much lower than most quantum mechanical methods. Here we present LMD simulations of charge transfer between a pair of fullerene molecules, which commonly serve as electron acceptors in OSCs. We find transfer rates consistent with experimental measurements of charge mobility, suggesting that this method may provide quantitative predictions of efficiency when used to simulate materials on the device scale. Our approach also offers information that is not captured in the overall transfer rate or mobility: in the simulation data, we observe exactly when and why intermolecular transfer events occur. In addition, we demonstrate that these simulations can shed light on the properties of polarons in OSCs. In conclusion, much remains to be learned about these quasi-particles, and there are no widely accepted methods for calculating properties such as effective mass and friction. Our model offers a promising approach to exploring mass and friction as well as providing insight into the details of polaron transport in OSCs.


Handbook of Materials Modeling

Handbook of Materials Modeling

Author: Sidney Yip

Publisher: Springer Science & Business Media

Published: 2007-11-17

Total Pages: 2903

ISBN-13: 1402032862

DOWNLOAD EBOOK

The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community. Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.


Theory of Charge Transport in Carbon Electronic Materials

Theory of Charge Transport in Carbon Electronic Materials

Author: Zhigang Shuai

Publisher: Springer Science & Business Media

Published: 2012-01-05

Total Pages: 96

ISBN-13: 3642250750

DOWNLOAD EBOOK

Mechanism of charge transport in organic solids has been an issue of intensive interests and debates for over 50 years, not only because of the applications in printing electronics, but also because of the great challenges in understanding the electronic processes in complex systems. With the fast developments of both electronic structure theory and the computational technology, the dream of predicting the charge mobility is now gradually becoming a reality. This volume describes recent progresses in Prof. Shuai’s group in developing computational tools to assess the intrinsic carrier mobility for organic and carbon materials at the first-principles level. According to the electron-phonon coupling strength, the charge transport mechanism is classified into three different categories, namely, the localized hopping model, the extended band model, and the polaron model. For each of them, a corresponding theoretical approach is developed and implemented into typical examples.


Electronic Processes in Organic Semiconductors

Electronic Processes in Organic Semiconductors

Author: Anna Köhler

Publisher: John Wiley & Sons

Published: 2015-06-08

Total Pages: 436

ISBN-13: 3527332928

DOWNLOAD EBOOK

The first advanced textbook to provide a useful introduction in a brief, coherent and comprehensive way, with a focus on the fundamentals. After having read this book, students will be prepared to understand any of the many multi-authored books available in this field that discuss a particular aspect in more detail, and should also benefit from any of the textbooks in photochemistry or spectroscopy that concentrate on a particular mechanism. Based on a successful and well-proven lecture course given by one of the authors for many years, the book is clearly structured into four sections: electronic structure of organic semiconductors, charged and excited states in organic semiconductors, electronic and optical properties of organic semiconductors, and fundamentals of organic semiconductor devices.


Handbook of Optoelectronic Device Modeling and Simulation

Handbook of Optoelectronic Device Modeling and Simulation

Author: Joachim Piprek

Publisher: CRC Press

Published: 2017-10-10

Total Pages: 835

ISBN-13: 149874947X

DOWNLOAD EBOOK

• Provides a comprehensive survey of fundamental concepts and methods for optoelectronic device modeling and simulation. • Gives a broad overview of concepts with concise explanations illustrated by real results. • Compares different levels of modeling, from simple analytical models to complex numerical models. • Discusses practical methods of model validation. • Includes an overview of numerical techniques.