Polymers for Electronic & Photonic Application

Polymers for Electronic & Photonic Application

Author: C. P. Wong

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 676

ISBN-13: 1483289397

DOWNLOAD EBOOK

The most recent advances in the use of polymeric materials by the electronic industry can be found in Polymers for Electronic and Photonic Applications. This bookprovides in-depth coverage of photoresis for micro-lithography, microelectronic encapsulants and packaging, insulators, dielectrics for multichip packaging,electronic and photonic applications of polymeric materials, among many other topics. Intended for engineers and scientists who design, process, and manufacturemicroelectronic components, this book will also prove useful for hybrid and systems packaging managers who want to be informed of the very latest developments inthis field.* Presents most recent advances in the use of polymeric materials by the electronic industry* Contributions by foremost experts in the field


Polymers for Photonics Applications II

Polymers for Photonics Applications II

Author: Kwang-Sup Lee

Publisher: Springer

Published: 2003-07-03

Total Pages: 222

ISBN-13: 3540456422

DOWNLOAD EBOOK

The future of information technology requires ultra high speed processing and large data storage capacity. Since the electronics technology using semi conduc tors and inorganic materials is about to reach its limits, much current research is focused on utilizing much faster photons than electrons, namely photonics. To achieve any significant effect on the actual use of the science of photonics, devel opments of more efficient photonics materials, better optical property evaluations, manufacture of devices for system applications, etc. are the subjects which need to be explored. In particular, the development of photonics materials stands in the forefront of research as this constitutes the most pertinent factor with regard to the development of ultra high speed and large capacity information processing. In this respect, there has been continuous research on photo responsive materials through molecular structure design and architecture and the results so far are very promising as functions and performances are beginning to realize their high expectations. The two special volumes "Polymers for Photonics Applications" give authorita tive and critical reviews on up to date activities in various fields of photonic poly mers including their promising applications. Seven articles have been contributed by internationally recognized and they deal with, polymers for second and third order nonlinear optics, quadratic parametric interactions in polymer waveguides, electroluminescent polymers as light sources, photoreflective polymers for holo graphic information storage, and highly efficient two photon absorbing organics and polymers.


Electronic and Photonic Applications of Polymers

Electronic and Photonic Applications of Polymers

Author: S. Richard Turner

Publisher:

Published: 1988

Total Pages: 400

ISBN-13:

DOWNLOAD EBOOK

Annotation. Papers of a symposium at the 192nd Meeting of the ACS Anaheim, Calif. Sept. 1988. Polymers have become a part of our everyday life. In the telecommunications industry applications have ranged from replacement of lead as a sheath in electric cable to meeting the stringent requirements for dielectrics in transoceanic communication. This seven-chapter book details the latest developments and trends in these applications. Annotation(c) 2003 Book News, Inc., Portland, OR (booknews.com).


Handbook of Organic Materials for Optical and (Opto)Electronic Devices

Handbook of Organic Materials for Optical and (Opto)Electronic Devices

Author: Oksana Ostroverkhova

Publisher: Elsevier

Published: 2013-08-31

Total Pages: 832

ISBN-13: 0857098764

DOWNLOAD EBOOK

Small molecules and conjugated polymers, the two main types of organic materials used for optoelectronic and photonic devices, can be used in a number of applications including organic light-emitting diodes, photovoltaic devices, photorefractive devices and waveguides. Organic materials are attractive due to their low cost, the possibility of their deposition from solution onto large-area substrates, and the ability to tailor their properties. The Handbook of organic materials for optical and (opto)electronic devices provides an overview of the properties of organic optoelectronic and nonlinear optical materials, and explains how these materials can be used across a range of applications.Parts one and two explore the materials used for organic optoelectronics and nonlinear optics, their properties, and methods of their characterization illustrated by physical studies. Part three moves on to discuss the applications of optoelectronic and nonlinear optical organic materials in devices and includes chapters on organic solar cells, electronic memory devices, and electronic chemical sensors, electro-optic devices.The Handbook of organic materials for optical and (opto)electronic devices is a technical resource for physicists, chemists, electrical engineers and materials scientists involved in research and development of organic semiconductor and nonlinear optical materials and devices. - Comprehensively examines the properties of organic optoelectronic and nonlinear optical materials - Discusses their applications in different devices including solar cells, LEDs and electronic memory devices - An essential technical resource for physicists, chemists, electrical engineers and materials scientists


Conjugated Polymer And Molecular Interfaces

Conjugated Polymer And Molecular Interfaces

Author: William R. Salaneck

Publisher: CRC Press

Published: 2001-10-18

Total Pages: 896

ISBN-13: 9780203910870

DOWNLOAD EBOOK

Defines the state-of-the-art in interface science for electronic applications of organic materials. Updates understanding of the foundaiton of interfacial properties. Describes novel electronic devices created from conjugated polymers and organic molecular solids.


Materials Research to Meet 21st-Century Defense Needs

Materials Research to Meet 21st-Century Defense Needs

Author: National Research Council

Publisher: National Academies Press

Published: 2003-03-25

Total Pages: 660

ISBN-13: 0309087007

DOWNLOAD EBOOK

In order to achieve the revolutionary new defense capabilities offered by materials science and engineering, innovative management to reduce the risks associated with translating research results will be needed along with the R&D. While payoff is expected to be high from the promising areas of materials research, many of the benefits are likely to be evolutionary. Nevertheless, failure to invest in more speculative areas of research could lead to undesired technological surprises. Basic research in physics, chemistry, biology, and materials science will provide the seeds for potentially revolutionary technologies later in the 21st century.


Polymer Science and Engineering

Polymer Science and Engineering

Author: National Research Council

Publisher: National Academies Press

Published: 1994-01-01

Total Pages: 193

ISBN-13: 0309049989

DOWNLOAD EBOOK

Polymers are used in everything from nylon stockings to commercial aircraft to artificial heart valves, and they have a key role in addressing international competitiveness and other national issues. Polymer Science and Engineering explores the universe of polymers, describing their properties and wide-ranging potential, and presents the state of the science, with a hard look at downward trends in research support. Leading experts offer findings, recommendations, and research directions. Lively vignettes provide snapshots of polymers in everyday applications. The volume includes an overview of the use of polymers in such fields as medicine and biotechnology, information and communication, housing and construction, energy and transportation, national defense, and environmental protection. The committee looks at the various classes of polymersâ€"plastics, fibers, composites, and other materials, as well as polymers used as membranes and coatingsâ€"and how their composition and specific methods of processing result in unparalleled usefulness. The reader can also learn the science behind the technology, including efforts to model polymer synthesis after nature's methods, and breakthroughs in characterizing polymer properties needed for twenty-first-century applications. This informative volume will be important to chemists, engineers, materials scientists, researchers, industrialists, and policymakers interested in the role of polymers, as well as to science and engineering educators and students.


Handbook of Advanced Electronic and Photonic Materials and Devices, Ten-Volume Set

Handbook of Advanced Electronic and Photonic Materials and Devices, Ten-Volume Set

Author: Hari Singh Nalwa

Publisher: Academic Press

Published: 2000-10-09

Total Pages: 383

ISBN-13: 0125137451

DOWNLOAD EBOOK

Vol. 1: Semiconductors;Vol. 2: Semiconductors Devices;Vol. 3: High-Tc Superconductors and Organic Conductors; Vol. 4: Ferroelectrics and Dielectrics; Vol. 5: Chalcogenide Glasses and Sol-Gel Materials; Vol. 6 Nanostructured Materials; Vol. 7: Liquid Crystals, Display and Laser Materials; Vol. 8: Conducting Polymers; Vol. 9: Nonlinear Optical Materials; Volume 10: Light-Emitting Diodes, Lithium Batteries and Polymer Devices


Applications of Electroactive Polymers

Applications of Electroactive Polymers

Author: Bruno Scrosati

Publisher: Springer Science & Business Media

Published: 1993-05-31

Total Pages: 376

ISBN-13: 9780412414305

DOWNLOAD EBOOK

Electroactive polymers have been the object of increasing academic and industrial interest and in the past ten to fifteen years substantial progress has been achieved in the development and the characterization of this important new class of conducting materials. These materials are usually classified in two large groups, according to the mode of their electric transport. One group includes polymers having transport almost exclusively of the ionic type and they are often called 'polymer electrolytes' or, in a broader way, 'polymer ionics'. The other group includes polymeric materials where the transport mechanism is mainly electronic in nature and which are commonly termed 'conducting polymers'. Ionically conducting polymers or polymer ionics may be typically described as polar macromolecular solids in which one or more of a wide range of salts has been dissolved. The most classic example is the combina tion of poly(ethylene oxide), PEO, and lithium salts, LiX. These PEO-LiX polymer ionics were first described and proposed for applications just over ten years ago. The practical relevance of these new materials was im mediately recognized and in the course of a few years the field expanded tremendously with the involvement of many academic and industrial lab oratories. Following this diversified research activity, the ionic transport mechanism in polymer ionics was soon established and this has led to the development of new host polymers of various types, new salts and advanced polymer architectures which have enabled room temperature conductivity to be raised by several orders of magnitude.