Introduction to the Electron Theory of Metals

Introduction to the Electron Theory of Metals

Author: Uichiro Mizutani

Publisher: Cambridge University Press

Published: 2001-06-14

Total Pages: 610

ISBN-13: 9780521587099

DOWNLOAD EBOOK

Electron theory of metals textbook for advanced undergraduate students of condensed-matter physics and related disciplines.


Electrons and Phonons

Electrons and Phonons

Author: J.M. Ziman

Publisher: Oxford University Press

Published: 2001-02

Total Pages: 572

ISBN-13: 9780198507796

DOWNLOAD EBOOK

This is a classic text of its time in condensed matter physics.


Electron Correlation in Metals

Electron Correlation in Metals

Author: K. Yamada

Publisher: Cambridge University Press

Published: 2010-06-24

Total Pages: 257

ISBN-13: 1139453068

DOWNLOAD EBOOK

Since the discovery of high Tc superconductivity, the role of electron correlation on superconductivity has been an important issue in condensed matter physics. Here the role of electron correlation in metals is explained in detail on the basis of the Fermi liquid theory. The book, originally published in 2004, discusses the following issues: enhancements of electronic specific heat and magnetic susceptibility, effects of electron correlation on transport phenomena such as electric resistivity and Hall coefficient, magnetism, Mott transition and unconventional superconductivity. These originate commonly from the Coulomb repulsion between electrons. In particular, superconductivity in strongly correlated electron systems is discussed with a unified point of view. This book is written to explain interesting physics in metals for undergraduate and graduate students and researchers in condensed matter physics.


Binding, Transport and Storage of Metal Ions in Biological Cells

Binding, Transport and Storage of Metal Ions in Biological Cells

Author: Wolfgang Maret

Publisher: Royal Society of Chemistry

Published: 2014-07-09

Total Pages: 990

ISBN-13: 1782622829

DOWNLOAD EBOOK

Metal ions play key roles in biology. Many are essential for catalysis, for electron transfer and for the fixation, sensing, and metabolism of gases. Others compete with those essential metal ions or have toxic or pharmacological effects. This book is structured around the periodic table and focuses on the control of metal ions in cells. It addresses the molecular aspects of binding, transport and storage that ensure balanced levels of the essential elements. Organisms have also developed mechanisms to deal with the non-essential metal ions. However, through new uses and manufacturing processes, organisms are increasingly exposed to changing levels of both essential and non-essential ions in new chemical forms. They may not have developed defenses against some of these forms (such as nanoparticles). Many diseases such as cancer, diabetes and neurodegeneration are associated with metal ion imbalance. There may be a deficiency of the essential metals, overload of either essential or non-essential metals or perturbation of the overall natural balance. This book is the first to comprehensively survey the molecular nature of the overall natural balance of metal ions in nutrition, toxicology and pharmacology. It is written as an introduction to research for students and researchers in academia and industry and begins with a chapter by Professor R J P Williams FRS.


2D Materials

2D Materials

Author: Phaedon Avouris

Publisher: Cambridge University Press

Published: 2017-06-29

Total Pages: 521

ISBN-13: 1316738132

DOWNLOAD EBOOK

Learn about the most recent advances in 2D materials with this comprehensive and accessible text. Providing all the necessary materials science and physics background, leading experts discuss the fundamental properties of a wide range of 2D materials, and their potential applications in electronic, optoelectronic and photonic devices. Several important classes of materials are covered, from more established ones such as graphene, hexagonal boron nitride, and transition metal dichalcogenides, to new and emerging materials such as black phosphorus, silicene, and germanene. Readers will gain an in-depth understanding of the electronic structure and optical, thermal, mechanical, vibrational, spin and plasmonic properties of each material, as well as the different techniques that can be used for their synthesis. Presenting a unified perspective on 2D materials, this is an excellent resource for graduate students, researchers and practitioners working in nanotechnology, nanoelectronics, nanophotonics, condensed matter physics, and chemistry.


Regulation of Photosynthesis

Regulation of Photosynthesis

Author: Eva-Mari Aro

Publisher: Springer Science & Business Media

Published: 2006-04-11

Total Pages: 624

ISBN-13: 0306481480

DOWNLOAD EBOOK

This book covers the expression of photosynthesis related genes including regulation both at transcriptional and translational levels. It reviews biogenesis, turnover, and senescence of thylakoid pigment protein complexes and highlights some crucial regulatory steps in carbon metabolism.


Carrier Scattering in Metals and Semiconductors

Carrier Scattering in Metals and Semiconductors

Author: V.F. Gantmakher

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 478

ISBN-13: 0444598235

DOWNLOAD EBOOK

The transport properties of solids, as well as the many optical phenomena in them are determined by the scattering of current carriers. ``Carrier Scattering in Metals and Semiconductors'' elucidates the state of the art in the research on the scattering mechanisms for current carriers in metals and semiconductors and describes experiments in which these mechanisms are most dramatically manifested.The selection and organization of the material is in a form to prepare the reader to reason independently and to deal just as independently with available theoretical results and experimental data. The subjects dealt with include: - electronic transport theory based on the test-particle and correlation-function concepts; - scattering by phonons, impurities, surfaces, magnons, dislocations, electron-electron scattering and electron temperature; - two-phonon scattering, spin-flip scattering, scattering in degenerate and many-band models.