This book discusses electromagnetic waves and antennas used as diagnostic tools and therapeutic techniques for applications in cancer detection, stroke event detection, GI diagnostics, and cardiovascular risk predictions. It discusses electromagnetic devices, wireless implants, and in vitro and in vivo testing.
Electromagnetic (EM) waves carry energy through propagation in space. This radiation associates with entangled electric and magnetic fields which must exist simultaneously. Although all EM waves travel at the speed of light in vacuum, they cover a wide range of frequencies called the EM spectrum. The various portions of the EM spectrum are referred to by various names based on their different attributes in the emission, transmission, and absorption of the corresponding waves and also based on their different practical applications. There are no certain boundaries separating these various portions, and the ranges tend to overlap. Overall, the EM spectrum, from the lowest to the highest frequency (longest to shortest wavelength) contains the following waves: radio frequency (RF), microwaves, millimeter waves, terahertz, infrared, visible light, ultraviolet, X-rays, and gamma rays. This Special Issue consists of sixteen papers covering a broad range of topics related to the applications of EM waves, from the design of filters and antennas for wireless communications to biomedical imaging and sensing and beyond.
This book highlights original research and high-quality technical briefs on electromagnetic wave propagation, radiation, and scattering, and their applications in industry and biomedical engineering. It also presents recent research achievements in the theoretical, computational, and experimental aspects of electromagnetic wave propagation, radiation, and scattering. The book is divided into three sections. Section 1 consists of chapters with general mathematical methods and approaches to the forward and inverse problems of wave propagation. Section 2 presents the problems of wave propagation in superconducting materials and porous media. Finally, Section 3 discusses various industry and biomedical applications of electromagnetic wave propagation, radiation, and scattering.
One of the most methodical treatments of electromagnetic wave propagation, radiation, and scattering—including new applications and ideas Presented in two parts, this book takes an analytical approach on the subject and emphasizes new ideas and applications used today. Part one covers fundamentals of electromagnetic wave propagation, radiation, and scattering. It provides ample end-of-chapter problems and offers a 90-page solution manual to help readers check and comprehend their work. The second part of the book explores up-to-date applications of electromagnetic waves—including radiometry, geophysical remote sensing and imaging, and biomedical and signal processing applications. Written by a world renowned authority in the field of electromagnetic research, this new edition of Electromagnetic Wave Propagation, Radiation, and Scattering: From Fundamentals to Applications presents detailed applications with useful appendices, including mathematical formulas, Airy function, Abel’s equation, Hilbert transform, and Riemann surfaces. The book also features newly revised material that focuses on the following topics: Statistical wave theories—which have been extensively applied to topics such as geophysical remote sensing, bio-electromagnetics, bio-optics, and bio-ultrasound imaging Integration of several distinct yet related disciplines, such as statistical wave theories, communications, signal processing, and time reversal imaging New phenomena of multiple scattering, such as coherent scattering and memory effects Multiphysics applications that combine theories for different physical phenomena, such as seismic coda waves, stochastic wave theory, heat diffusion, and temperature rise in biological and other media Metamaterials and solitons in optical fibers, nonlinear phenomena, and porous media Primarily a textbook for graduate courses in electrical engineering, Electromagnetic Wave Propagation, Radiation, and Scattering is also ideal for graduate students in bioengineering, geophysics, ocean engineering, and geophysical remote sensing. The book is also a useful reference for engineers and scientists working in fields such as geophysical remote sensing, bio–medical engineering in optics and ultrasound, and new materials and integration with signal processing.
Antennas and Wireless Power Transfer Methods for Biomedical Applications Join the cutting edge of biomedical technology with this essential reference The role of wireless communications in biomedical technology is a significant one. Wireless and antenna-driven communication between telemetry components now forms the basis of cardiac pacemakers and defibrillators, cochlear implants, glucose readers, and more. As wireless technology continues to advance and miniaturization progresses, it’s more essential than ever that biomedical research and development incorporate the latest technology. Antennas and Wireless Power Transfer Methods for Biomedical Applications provides a comprehensive introduction to wireless technology and its incorporation into the biomedical field. Beginning with an introduction to recent developments in antenna and wireless technology, it analyzes the major wireless systems currently available and their biomedical applications, actual and potential. The result is an essential guide to technologies that have already improved patient outcomes and increased life expectancies worldwide. Readers will also find: Authored by internationally renowned researchers of wireless technologies Detailed analysis of CP implantable antennas, wearable antennas, near-field wireless power, and more Up to 100 figures that supplement the text Antennas and Wireless Power Transfer Methods for Biomedical Applications is a valuable introduction for biomedical researchers and biomedical engineers, as well as for research and development professionals in the medical device industry.
The book consists of the latest research in biomedical and communication integration. It discusses the fabrication and testing outcomes of the Internet of Things-enabled biomedical applications. The book focuses on recent advances in the field of planar antenna design and their applications in space communication, mobile communication, wireless communication, and wearable applications. Planar antennas are also used in medical applications in microwave imaging, medical implants, hyperthermia treatments, and wireless wellness monitoring. This book presents planar antenna design concepts, methods, and techniques to enhance the performance parameters and applications for IoT and device-to-device communication. It provides the latest techniques used for the design of antennas in terms of their structures, defected ground, MIMO, and fractal design. This book also addresses the specific steps to resolve issues in designing antennas and how to design conformal and miniaturized antenna structures for various applications.
This reference, written by leading authorities in the field, gives basic theory, implementation details, advanced research, and applications of RF and microwave in healthcare and biosensing. It first provides a solid understanding of the fundamentals with coverage of the basics of microwave engineering and the interaction between electromagnetic waves and biomaterials. It then presents the state-of-the-art development in microwave biosensing, implantable devices -including applications of microwave technology for sensing biological tissues – and medical diagnosis, along with applications involving remote patient monitoring. this book is an ideal reference for RF and microwave engineer working on, or thinking of working on, the applications of RF and Microwave technology in medicine and biology. Learn: - The fundamentals of RF and microwave engineering in healthcare and biosensing - How to combine biological and medical aspects of the field with underlying engineering concepts - How to implement microwave biosensing for material characterization and cancer diagnosis - Applications and functioning of wireless implantable biomedical devices and microwave non-contact biomedical radars - How to combine devices, systems, and methods for new practical applications - The first book to review the fundamentals, latest developments, and future trends in this important emerging field with emphasis on engineering aspects of sensing, monitoring, and diagnosis using RF and Microwave - Extensive coverage of biosensing applications are included - Written by leaders in the field, including members of the Technical Coordinating Committee of the Biological Effects and Medical Applications of the IEEE Microwave Theory and Techniques Society
This consistent and systematic review of recent advances in optical antenna theory and practice brings together leading experts in the fields of electrical engineering, nano-optics and nano-photonics, physical chemistry and nanofabrication. Fundamental concepts and functionalities relevant to optical antennas are explained, together with key principles for optical antenna modelling, design and characterisation. Recognising the tremendous potential of this technology, practical applications are also outlined. Presenting a clear translation of the concepts of radio antenna design, near-field optics and field-enhanced spectroscopy into optical antennas, this interdisciplinary book is an indispensable resource for researchers and graduate students in engineering, optics and photonics, physics and chemistry.
A primary resource for graduate teaching and research in advanced electromagnetic materials, Special Topics in Electromagnetics covers some new methods for treating the interaction of electromagnetic field with materials, as well as biological applications and radar identification using electromagnetic waves. This book supplements its content with detailed mathematical derivation and covers some practical applications.
Written by the leading experts in the field, this text provides systematic coverage of the theory, physics, functional designs, and engineering applications of advanced engineered electromagnetic surfaces. All the essential topics are included, from the fundamental theorems of surface electromagnetics, to analytical models, general sheet transmission conditions (GSTC), metasurface synthesis, and quasi-periodic analysis. A plethora of examples throughout illustrate the practical applications of surface electromagnetics, including gap waveguides, modulated metasurface antennas, transmit arrays, microwave imaging, cloaking, and orbital angular momentum (OAM ) beam generation, allowing readers to develop their own surface electromagnetics-based devices and systems. Enabling a fully comprehensive understanding of surface electromagnetics, this is an invaluable text for researchers, practising engineers and students working in electromagnetics antennas, metasurfaces and optics.