Electromagnetic Phenomena in Matter

Electromagnetic Phenomena in Matter

Author: Igor N. Toptygin

Publisher: John Wiley & Sons

Published: 2015-02-09

Total Pages: 720

ISBN-13: 3527413162

DOWNLOAD EBOOK

Modern electrodynamics in different media is a wide branch of electrodynamics which combines the exact theory of electromagnetic fields in the presence of electric charges and currents with statistical description of these fields in gases, plasmas, liquids and solids; dielectrics, conductors and superconductors. It is widely used in physics and in other natural sciences (such as astrophysics and geophysics, biophysics, ecology and evolution of terrestrial climate), and in various technological applications (radio electronics, technology of artificial materials, laser-based technological processes, propagation of bunches of charges particles, linear and nonlinear electromagnetic waves, etc.). Electrodynamics of matter is based on the exact fundamental (microscopic) electrodynamics but is supplemented with specific descriptions of electromagnetic fields in various media using the methods of statistical physics, quantum mechanics, physics of condensed matter (including theory of superconductivity), physical kinetics and plasma physics. This book presents in one unique volume a systematic description of the main electrodynamic phenomena in matter: - A large variety of theoretical approaches used in describing various media - Numerous important manifestations of electrodynamics in matter (magnetic materials, superconductivity, magnetic hydrodynamics, holography, radiation in crystals, solitons, etc.) - A description of the applications used in different branches of physics and many other fields of natural sciences - Describes the whole complexity of electrodynamics in matter including material at different levels. - Oriented towards 3-4 year bachelors, masters, and PhD students, as well as lectures, and engineers and scientists working in the field. - The reader will need a basic knowledge of general physics, higher mathematics, classical mechanics and microscopic (fundamental) electrodynamics at the standard university level - All examples and problems are described in detail in the text to help the reader learn how to solve problems - Advanced problems are marked with one asterisk, and the most advanced ones with two asterisks. Some problems are recommended to be solved first, and are are marked by filled dots; they are more general and important or contain results used in other problems.


Electromagnetic Phenomena in Matter - Statistical and Quantum Approaches

Electromagnetic Phenomena in Matter - Statistical and Quantum Approaches

Author: Toptygin

Publisher: VCH

Published: 2013-09-11

Total Pages: 600

ISBN-13: 9783527411801

DOWNLOAD EBOOK

A unique, systematic description of the main electrodynamic phenomena in matter all in one volume. This advanced textbook covers a large variety of theoretical approaches used in describing various media, plus modern techniques and applications in physics and many other fields of natural sciences. As such, it describes the whole complexity of the topic, including material at different levels. Oriented towards 3-4 year bachelors, masters, and PhD students, as well as lecturers, readers will need a basic knowledge of general physics, higher mathematics, classical mechanics and microscopic electrodynamics at the standard university level. All examples and problems are described in detail in the text to help the reader learn how to solve problems.


Nonlinear Surface Electromagnetic Phenomena

Nonlinear Surface Electromagnetic Phenomena

Author: H.-E. Ponath

Publisher:

Published: 1991

Total Pages: 680

ISBN-13:

DOWNLOAD EBOOK

In recent years the physics of electromagnetic surface phenomena has developed rapidly, evolving into technologies for communications and industry, such as fiber and integrated optics. The variety of phenomena based on electromagnetism at surfaces is rich and this book was written with the aim of summarizing the available knowledge in selected areas of the field. The book contains reviews written by solid state and optical physicists on the nonlinear interaction of electromagnetic waves at and with surfaces and films. Both the physical phenomena and some potential applications are dealt with. Included are discussions of nonlinear wave mixing on films and surfaces, second harmonic generation in waveguides and at surfaces, nonlinear waves guided by dielectric and semiconductor surfaces and films, surface gratings formed by high energy laser beams, and reflection and transmission switching of strong beams onto nonlinear surfaces. Chapters on light scattering from surface excitations and magnetic order-disorder and orientational phase transitions complete this essential contribution to the modern optics literature.


Electromagnetic Phenomena in Matter

Electromagnetic Phenomena in Matter

Author: Igor N. Toptygin

Publisher: John Wiley & Sons

Published: 2015-03-19

Total Pages: 722

ISBN-13: 3527413189

DOWNLOAD EBOOK

Modern electrodynamics in different media is a wide branch of electrodynamics which combines the exact theory of electromagnetic fields in the presence of electric charges and currents with statistical description of these fields in gases, plasmas, liquids and solids; dielectrics, conductors and superconductors. It is widely used in physics and in other natural sciences (such as astrophysics and geophysics, biophysics, ecology and evolution of terrestrial climate), and in various technological applications (radio electronics, technology of artificial materials, laser-based technological processes, propagation of bunches of charges particles, linear and nonlinear electromagnetic waves, etc.). Electrodynamics of matter is based on the exact fundamental (microscopic) electrodynamics but is supplemented with specific descriptions of electromagnetic fields in various media using the methods of statistical physics, quantum mechanics, physics of condensed matter (including theory of superconductivity), physical kinetics and plasma physics. This book presents in one unique volume a systematic description of the main electrodynamic phenomena in matter: - A large variety of theoretical approaches used in describing various media - Numerous important manifestations of electrodynamics in matter (magnetic materials, superconductivity, magnetic hydrodynamics, holography, radiation in crystals, solitons, etc.) - A description of the applications used in different branches of physics and many other fields of natural sciences - Describes the whole complexity of electrodynamics in matter including material at different levels. - Oriented towards 3-4 year bachelors, masters, and PhD students, as well as lectures, and engineers and scientists working in the field. - The reader will need a basic knowledge of general physics, higher mathematics, classical mechanics and microscopic (fundamental) electrodynamics at the standard university level - All examples and problems are described in detail in the text to help the reader learn how to solve problems - Advanced problems are marked with one asterisk, and the most advanced ones with two asterisks. Some problems are recommended to be solved first, and are are marked by filled dots; they are more general and important or contain results used in other problems.


Nonlinear Surface Electromagnetic Phenomena

Nonlinear Surface Electromagnetic Phenomena

Author: H.-E. Ponath

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 671

ISBN-13: 0444600523

DOWNLOAD EBOOK

In recent years the physics of electromagnetic surface phenomena has developed rapidly, evolving into technologies for communications and industry, such as fiber and integrated optics. The variety of phenomena based on electromagnetism at surfaces is rich and this book was written with the aim of summarizing the available knowledge in selected areas of the field. The book contains reviews written by solid state and optical physicists on the nonlinear interaction of electromagnetic waves at and with surfaces and films. Both the physical phenomena and some potential applications are dealt with. Included are discussions of nonlinear wave mixing on films and surfaces, second harmonic generation in waveguides and at surfaces, nonlinear waves guided by dielectric and semiconductor surfaces and films, surface gratings formed by high energy laser beams, and reflection and transmission switching of strong beams onto nonlinear surfaces. Chapters on light scattering from surface excitations and magnetic order-disorder and orientational phase transitions complete this essential contribution to the modern optics literature.


Semiconductor Optics and Transport Phenomena

Semiconductor Optics and Transport Phenomena

Author: Wilfried Schäfer

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 498

ISBN-13: 3662046636

DOWNLOAD EBOOK

Well-balanced and up-to-date introduction to the field of semiconductor optics, including transport phenomena in semiconductors. Starting with the theoretical fundamentals of this field the book develops, assuming a basic knowledge of solid-state physics. The application areas of the theory covered include semiconductor lasers, detectors, electro-optic modulators, single-electron transistors, microcavities and double-barrier resonant tunneling diodes. One hundred problems with hints for solution help the readers to deepen their knowledge.


Handbook of Magnetic Phenomena

Handbook of Magnetic Phenomena

Author: Harry E. Burke

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 560

ISBN-13: 9401170061

DOWNLOAD EBOOK

The general theory of magnetism and the vast range of individual phe nomena it embraces have already been examined in many volumes. Spe cialists hardly need help in charting their way through the maze of pub lished information. At the same time, a nonspecialist might easily be discouraged by this abundance. Most texts are restricted in their coverage, and their concepts may well appear to be disorganized when the uninitiated attempt to consider them in their totality. Since the subject is already thoroughly researched with very little new information added year by year, this is hardly a satisfactory state of affairs. By now, it should be possible for anyone with even a minimum of technical competence to feel com pletely at home with all of the basic magnetic principles. The present volume addresses this issue by stressing simplicity-sim plicity of order and simplicity of range as well as simplicity of detail. It proposes a pattern of logical classification based on the electronic con sequences that result whenever any form of matter interacts with any kind of energy. An attempt has been made to present each phenomenon of interest in its most visually graphic form while reducing the verbal de scription to the minimum needed to back up the illustrations. This might be called a Life magazine type of approach, in which each point is prin cipally supported by a picture. The illustrations make use of two (perhaps unique) conventions.