Electrochemical Components

Electrochemical Components

Author: Marie-Cécile Pera

Publisher: John Wiley & Sons

Published: 2013-08-02

Total Pages: 251

ISBN-13: 1118576926

DOWNLOAD EBOOK

This book focuses on the methods of storage commonly used in hybrid systems. After an introductory chapter reviewing the basics of electrochemistry, Chapter 2 is given over to the storage of electricity in the form of hydrogen. Once hydrogen has been made, we have to be able to convert it back into electricity on demand. This can be done with another energy converter: a fuel cell, the subject of Chapter 3. Such a system is unable to deliver significant dynamics in terms of storage and release of electricity and needs to be supplemented with another solution: a detailed study of supercapacitors is provided in Chapter 4.While the storage systems touched upon in the previous three chapters (hydrogen batteries and supercapacitors) both exhibit advantageous characteristics, at present they are still relatively costly. Thus, the days of the electrochemical accumulator by no means appear to be numbered just yet. This will therefore be the topic of Chapter 5. Finally, on the basis of the elements laid down in the previous chapters, Chapter 6 will focus on electrical hybridization of these storage systems, with a view to enhancing the performance (in terms of energy, lifetime, cost, etc.) of the newly formed system. Aimed at an audience of researchers, industrialists, academics, teachers and students, many exercises, along with corrected solutions, are provided throughout the book. Contents 1. Basic Concepts of Electrochemistry used in Electrical Engineering. 2. Water Electrolyzers. 3. Fuel Cells. 4. Electrical Energy Storage by Supercapacitors. 5. Electrochemical Accumulators. 6. Hybrid Electrical System. About the Authors Marie-Cécile Péra is a Full Professor at the University of Franche-Comte in France and Deputy Director of the FEMTO-ST Institute (CNRS). Her research activities include modeling, control and diagnosis of electric power generation systems (fuel cells – PEMFC and SOFC, supercapacities, batteries) for transportation and stationary applications. She has contributed to more than 180 articles in international journals and conferences. Daniel Hissel is Full Professor at the University of Franche-Comte in France and Director of the Fuel Cell Lab Research Federation (CNRS). He also leads a research team devoted to hybrid electrical systems in the FEMTO-ST Institute (CNRS). He has published more than 250 research papers on modeling, control, diagnostics and prognostics of hybrid electrical systems. Hamid Gualous is Full Professor at the University of Caen Lower Normandy in France and director of the LUSAC laboratory. His current research interests include power electronics, electric energy storage, power and energy systems and energy management. Christophe Turpin is Full Researcher at the CNRS (French National Center for Scientific Research). He is responsible for hydrogen activities within the Laboratory LAPLACE, Toulouse, France. His research activities include the characterization and modeling of fuel cells and electrolyzers, the state of health of these components, and their hybridization with other electrochemical components (ultracapacitors, batteries) within optimized energy systems for stationary and aeronautical applications.


Electrochemical Components

Electrochemical Components

Author: Marie-Cécile Pera

Publisher: John Wiley & Sons

Published: 2013-07-22

Total Pages: 0

ISBN-13: 9781848214019

DOWNLOAD EBOOK

This book focuses on the methods of storage commonly used in hybrid systems. After an introductory chapter reviewing the basics of electrochemistry, Chapter 2 is given over to the storage of electricity in the form of hydrogen. Once hydrogen has been made, we have to be able to convert it back into electricity on demand. This can be done with another energy converter: a fuel cell, the subject of Chapter 3. Such a system is unable to deliver significant dynamics in terms of storage and release of electricity and needs to be supplemented with another solution: a detailed study of supercapacitors is provided in Chapter 4.While the storage systems touched upon in the previous three chapters (hydrogen batteries and supercapacitors) both exhibit advantageous characteristics, at present they are still relatively costly. Thus, the days of the electrochemical accumulator by no means appear to be numbered just yet. This will therefore be the topic of Chapter 5. Finally, on the basis of the elements laid down in the previous chapters, Chapter 6 will focus on electrical hybridization of these storage systems, with a view to enhancing the performance (in terms of energy, lifetime, cost, etc.) of the newly formed system. Aimed at an audience of researchers, industrialists, academics, teachers and students, many exercises, along with corrected solutions, are provided throughout the book. Contents 1. Basic Concepts of Electrochemistry used in Electrical Engineering. 2. Water Electrolyzers. 3. Fuel Cells. 4. Electrical Energy Storage by Supercapacitors. 5. Electrochemical Accumulators. 6. Hybrid Electrical System. About the Authors Marie-Cécile Péra is a Full Professor at the University of Franche-Comte in France and Deputy Director of the FEMTO-ST Institute (CNRS). Her research activities include modeling, control and diagnosis of electric power generation systems (fuel cells – PEMFC and SOFC, supercapacities, batteries) for transportation and stationary applications. She has contributed to more than 180 articles in international journals and conferences. Daniel Hissel is Full Professor at the University of Franche-Comte in France and Director of the Fuel Cell Lab Research Federation (CNRS). He also leads a research team devoted to hybrid electrical systems in the FEMTO-ST Institute (CNRS). He has published more than 250 research papers on modeling, control, diagnostics and prognostics of hybrid electrical systems. Hamid Gualous is Full Professor at the University of Caen Lower Normandy in France and director of the LUSAC laboratory. His current research interests include power electronics, electric energy storage, power and energy systems and energy management. Christophe Turpin is Full Researcher at the CNRS (French National Center for Scientific Research). He is responsible for hydrogen activities within the Laboratory LAPLACE, Toulouse, France. His research activities include the characterization and modeling of fuel cells and electrolyzers, the state of health of these components, and their hybridization with other electrochemical components (ultracapacitors, batteries) within optimized energy systems for stationary and aeronautical applications.


Handbook of Electrochemistry

Handbook of Electrochemistry

Author: Cynthia G. Zoski

Publisher: Elsevier

Published: 2007-02-07

Total Pages: 935

ISBN-13: 0444519580

DOWNLOAD EBOOK

Electrochemistry plays a key role in a broad range of research and applied areas including the exploration of new inorganic and organic compounds, biochemical and biological systems, corrosion, energy applications involving fuel cells and solar cells, and nanoscale investigations. The Handbook of Electrochemistry serves as a source of electrochemical information, providing details of experimental considerations, representative calculations, and illustrations of the possibilities available in electrochemical experimentation. The book is divided into five parts: Fundamentals, Laboratory Practical, Techniques, Applications, and Data. The first section covers the fundamentals of electrochemistry which are essential for everyone working in the field, presenting an overview of electrochemical conventions, terminology, fundamental equations, and electrochemical cells, experiments, literature, textbooks, and specialized books. Part 2 focuses on the different laboratory aspects of electrochemistry which is followed by a review of the various electrochemical techniques ranging from classical experiments to scanning electrochemical microscopy, electrogenerated chemiluminesence and spectroelectrochemistry. Applications of electrochemistry include electrode kinetic determinations, unique aspects of metal deposition, and electrochemistry in small places and at novel interfaces and these are detailed in Part 4. The remaining three chapters provide useful electrochemical data and information involving electrode potentials, diffusion coefficients, and methods used in measuring liquid junction potentials. * serves as a source of electrochemical information * includes useful electrochemical data and information involving electrode potentials, diffusion coefficients, and methods used in measuring liquid junction potentials * reviews electrochemical techniques (incl. scanning electrochemical microscopy, electrogenerated chemiluminesence and spectroelectrochemistry)


Encyclopedia of Electrochemical Power Sources

Encyclopedia of Electrochemical Power Sources

Author:

Publisher: Elsevier

Published: 2024-09-16

Total Pages: 5674

ISBN-13: 0323958222

DOWNLOAD EBOOK

The Encyclopedia of Electrochemical Power Sources, Second Edition, is a comprehensive seven-volume set that serves as a vital interdisciplinary reference for those working with batteries, fuel cells, electrolyzers, supercapacitors, and photo-electrochemical cells. With an increased focus on the environmental and economic impacts of electrochemical power sources, this work not only consolidates extensive coverage of the field but also serves as a gateway to the latest literature for professionals and students alike. The field of electrochemical power sources has experienced significant growth and development since the first edition was published in 2009. This is reflected in the exponential growth of the battery market, the improvement of many conventional systems, and the introduction of new systems and technologies. This completely revised second edition captures these advancements, providing updates on all scientific, technical, and economic developments over the past decade. Thematically arranged, this edition delves into crucial areas such as batteries, fuel cells, electrolyzers, supercapacitors, and photo-electrochemical cells. It explores challenges and advancements in electrode and electrolyte materials, structural design, optimization, application of novel materials, and performance analysis. This comprehensive resource, with its focus on the future of electrochemical power sources, is an essential tool for navigating this rapidly evolving field. - Covers the main types of power sources, including their operating principles, systems, materials, and applications - Serves as a primary source of information for electrochemists, materials scientists, energy technologists, and engineers - Incorporates 365 articles, with timely coverage of environmental and sustainability aspects - Arranged thematically to facilitate easy navigation of topics and easy exploration of the field across its key branches - Follows a consistent structure and features elements such as key objective boxes, summaries, figures, references, and cross-references etc., to help students, faculty, and professionals alike


Electrochemical Biosensors

Electrochemical Biosensors

Author: Ali A. Ensafi

Publisher: Elsevier

Published: 2019-07-25

Total Pages: 390

ISBN-13: 0128164921

DOWNLOAD EBOOK

Electrochemical Biosensors summarizes fundamentals and trends in electrochemical biosensing. It introduces readers to the principles of transducing biological information to measurable electrical signals to identify and quantify organic and inorganic substances in samples. The complexity of devices related to biological matrices makes this challenging, but this measurement and analysis are critically valuable in biotechnology and medicine. Electrochemical biosensors combine the sensitivity of electroanalytical methods with the inherent bioselectivity of the biological component. Some of these sensor devices have reached the commercial stage and are routinely used in clinical, environmental, industrial and agricultural applications. - Describes several electrochemical methods used as detection techniques with biosensors - Discusses different modifiers, including nanomaterials, for preparing suitable pathways for immobilizing biomaterials at the sensor - Explains various types of signal monitoring, along with several recognition systems, including antibodies/antigens, DNA-based biosensors, aptamers (protein-based), and more


Electrochemical Technologies for Energy Storage and Conversion

Electrochemical Technologies for Energy Storage and Conversion

Author: Jiujun Zhang

Publisher: John Wiley & Sons

Published: 2012-03-27

Total Pages: 842

ISBN-13: 352764007X

DOWNLOAD EBOOK

In this handbook and ready reference, editors and authors from academia and industry share their in-depth knowledge of known and novel materials, devices and technologies with the reader. The result is a comprehensive overview of electrochemical energy and conversion methods, including batteries, fuel cells, supercapacitors, hydrogen generation and storage as well as solar energy conversion. Each chapter addresses electrochemical processes, materials, components, degradation mechanisms, device assembly and manufacturing, while also discussing the challenges and perspectives for each energy storage device in question. In addition, two introductory chapters acquaint readers with the fundamentals of energy storage and conversion, and with the general engineering aspects of electrochemical devices. With its uniformly structured, self-contained chapters, this is ideal reading for entrants to the field as well as experienced researchers.


Electrochemical Microsystem Technologies

Electrochemical Microsystem Technologies

Author: J. Walter Schultze

Publisher: CRC Press

Published: 2002-09-05

Total Pages: 594

ISBN-13: 020321921X

DOWNLOAD EBOOK

Driven by the electronics industry, electrochemical technology has rapidly evolved, finding increasing applications in microelectronics, batteries, sensors, materials science, industrial fabrication, corrosion, microbiology, neurobiology and medicine. Electrochemical Microsystem Technologies provides an overview of the technological status; the dev


Lithium Batteries and other Electrochemical Storage Systems

Lithium Batteries and other Electrochemical Storage Systems

Author: Christian Glaize

Publisher: John Wiley & Sons

Published: 2013-07-22

Total Pages: 388

ISBN-13: 1848214960

DOWNLOAD EBOOK

Lithium batteries were introduced relatively recently in comparison to lead- or nickel-based batteries, which have been around for over 100 years. Nevertheless, in the space of 20 years, they have acquired a considerable market share – particularly for the supply of mobile devices. We are still a long way from exhausting the possibilities that they offer. Numerous projects will undoubtedly further improve their performances in the years to come. For large-scale storage systems, other types of batteries are also worthy of consideration: hot batteries and redox flow systems, for example. This book begins by showing the diversity of applications for secondary batteries and the main characteristics required of them in terms of storage. After a chapter presenting the definitions and measuring methods used in the world of electrochemical storage, and another that gives examples of the applications of batteries, the remainder of this book is given over to describing the batteries developed recently (end of the 20th Century) which are now being commercialized, as well as those with a bright future. The authors also touch upon the increasingly rapid evolution of the technologies, particularly regarding lithium batteries, for which the avenues of research are extremely varied. Contents Part 1. Storage Requirements Characteristics of Secondary Batteries Examples of Use 1. Breakdown of Storage Requirements. 2. Definitions and Measuring Methods. 3. Practical Examples Using Electrochemical Storage. Part 2. Lithium Batteries 4. Introduction to Lithium Batteries. 5. The Basic Elements in Lithium-ion Batteries: Electrodes, Electrolytes and Collectors. 6. Usual Lithium-ion Batteries. 7. Present and Future Developments Regarding Lithium-ion Batteries. 8. Lithium-Metal Polymer Batteries. 9. Lithium-Sulfur Batteries. 10. Lithium-Air Batteries. 11. Lithium Resources. Part 3. Other Types of Batteries 12. Other Types of Batteries. About the Authors Christian Glaize is Professor at the University of Montpellier, France. He is also Researcher in the Materials and Energy Group (GEM) of the Institute for Electronics (IES), France. Sylvie Geniès is a project manager at the French Alternative Energies and Atomic Energy Commission (Commissariat à l’Energie Atomique et aux Energies Alternatives) in Grenoble, France.


Disposable Electrochemical Sensors for Healthcare Monitoring

Disposable Electrochemical Sensors for Healthcare Monitoring

Author: A Pandikumar

Publisher: Royal Society of Chemistry

Published: 2021-04-29

Total Pages: 360

ISBN-13: 1839163372

DOWNLOAD EBOOK

Disposable electrodes have been widely used as a sensing platform in electrical and electrochemical sensors owing to the possibility of quantitative detection using clinical biomarkers with high precision, sensitivity and reproducibility, which are necessary for accurate diagnosis of the health condition of an individual. This book focusses on the emerging disposable electrochemical sensors in the health sector and the advancement of analytical devices to monitor diabetic, cancer and cardiovascular patients using different nanomaterials. It discusses the upcoming strategies, advantages and the limitations of the existing devices using disposable electrodes. Uniquely, it covers in-depth knowledge of mechanistic features of various designs of screen-printing electrodes and the material aspects required of sensors developed for the healthcare field. It also looks at the portable devices using a variety of materials and the future directions for research in this area. Appealing to the health care industry, this book is aimed at academic and research institutes at both the graduate and postgraduate level. The contributors are leading experts in the field and they are providing guidance for the next decade of research in the field of disposable electrochemical biosensors.


Electrochemical Methods of Nanostructure Preparation

Electrochemical Methods of Nanostructure Preparation

Author: László Péter

Publisher: Springer Nature

Published: 2021-04-24

Total Pages: 544

ISBN-13: 3030691179

DOWNLOAD EBOOK

This book summarizes the electrochemical routes of nanostructure preparation in a systematic and didactic manner. It provides a comprehensive overview of electrodeposition, anodization, carbon nanotube preparation and other methods of nanostructure fabrication, combining essential information on the physical background of electrochemistry with materials science aspects of the field. The book includes a brief introduction to general electrochemistry with an emphasis on physico-chemical aspects, followed by a description of the sample preparation methods. In each chapter, an overview of the particular method is accompanied by a discussion of the relevant physical or chemical properties of the materials, including magnetic, mechanical, optical, catalytic, sensoric and other features. While some preparation methods are discussed in connection with the theories of physical electrochemistry (e.g. electrodeposition), the book also covers methods that are more heuristic but nonetheless utilize electric current (e.g. anodization of porous alumina or synthesis of carbon nanotubes by means of electric arc discharge).