Electrical Characterization of Metal/organic and Organic/organic Interfaces
Author: Lei Diao
Publisher:
Published: 2007
Total Pages: 308
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author: Lei Diao
Publisher:
Published: 2007
Total Pages: 308
ISBN-13:
DOWNLOAD EBOOKAuthor: Sarah Schols
Publisher: Springer Science & Business Media
Published: 2011-05-10
Total Pages: 163
ISBN-13: 9400716087
DOWNLOAD EBOOKDevice Architecture and Materials for Organic Light-Emitting Devices focuses on the design of new device and material concepts for organic light-emitting devices, thereby targeting high current densities and an improved control of the triplet concentration. A new light-emitting device architecture, the OLED with field-effect electron transport, is demonstrated. This device is a hybrid between a diode and a field-effect transistor. Compared to conventional OLEDs, the metallic cathode is displaced by one to several micrometers from the light-emitting zone, reducing optical absorption losses. The electrons injected by the cathode accumulate at an organic heterojunction and are transported to the light-emission zone by field-effect. High mobilities for charge carriers are achieved in this way, enabling a high current density and a reduced number of charge carriers in the device. Pulsed excitation experiments show that pulses down to 1 μs can be applied to this structure without affecting the light intensity, suggesting that pulsed excitation might be useful to reduce the accumulation of triplets in the device. The combination of all these properties makes the OLED with field-effect electron transport particularly interesting for waveguide devices and future electrically pumped lasers. In addition, triplet-emitter doped organic materials, as well as the use of triplet scavengers in conjugated polymers are investigated.
Author: Hari Singh Nalwa
Publisher: Elsevier
Published: 2001-10-26
Total Pages: 1915
ISBN-13: 0080533825
DOWNLOAD EBOOKThis handbook brings together, under a single cover, all aspects of the chemistry, physics, and engineering of surfaces and interfaces of materials currently studied in academic and industrial research. It covers different experimental and theoretical aspects of surfaces and interfaces, their physical properties, and spectroscopic techniques that have been applied to a wide class of inorganic, organic, polymer, and biological materials. The diversified technological areas of surface science reflect the explosion of scientific information on surfaces and interfaces of materials and their spectroscopic characterization. The large volume of experimental data on chemistry, physics, and engineering aspects of materials surfaces and interfaces remains scattered in so many different periodicals, therefore this handbook compilation is needed.The information presented in this multivolume reference draws on two decades of pioneering research on the surfaces and interfaces of materials to offer a complete perspective on the topic. These five volumes-Surface and Interface Phenomena; Surface Characterization and Properties; Nanostructures, Micelles, and Colloids; Thin Films and Layers; Biointerfaces and Applications-provide multidisciplinary review chapters and summarize the current status of the field covering important scientific and technological developments made over past decades in surfaces and interfaces of materials and spectroscopic techniques with contributions from internationally recognized experts from all over the world. Fully cross-referenced, this book has clear, precise, and wide appeal as an essential reference source long due for the scientific community. The complete reference on the topic of surfaces and interfaces of materialsThe information presented in this multivolume reference draws on two decades of pioneering researchProvides multidisciplinary review chapters and summarizes the current status of the fieldCovers important scientific and technological developments made over past decades in surfaces and interfaces of materials and spectroscopic techniquesContributions from internationally recognized experts from all over the world
Author: Tomas Torres
Publisher: John Wiley & Sons
Published: 2013-08-05
Total Pages: 636
ISBN-13: 1118354362
DOWNLOAD EBOOKDiscover a new generation of organic nanomaterials and their applications Recent developments in nanoscience and nanotechnology have given rise to a new generation of functional organic nanomaterials with controlled morphology and well-defined properties, which enable a broad range of useful applications. This book explores some of the most important of these organic nanomaterials, describing how they are synthesized and characterized. Moreover, the book explains how researchers have incorporated organic nanomaterials into devices for real-world applications. Featuring contributions from an international team of leading nanoscientists, Organic Nanomaterials is divided into five parts: Part One introduces the fundamentals of nanomaterials and self-assembled nanostructures Part Two examines carbon nanostructures from fullerenes to carbon nanotubes to graphene reporting on properties, theoretical studies, and applications Part Three investigates key aspects of some inorganic materials, self-assembled monolayers, organic field effect transistors, and molecular self-assembly at solid surfaces Part Four explores topics that involve both biological aspects and nanomaterials such as biofunctionalized surfaces Part Five offers detailed examples of how organic nanomaterials enhance sensors and molecular photovoltaics Most of the chapters end with a summary highlighting the key points. References at the end of each chapter guide readers to the growing body of original research reports and reviews in the field. Reflecting the interdisciplinary nature of organic nanomaterials, this book is recommended for researchers in chemistry, physics, materials science, polymer science, and chemical and materials engineering. All readers will learn the principles of synthesizing and characterizing new organic nanomaterials in order to support a broad range of exciting new applications.
Author: Seth R Marder
Publisher: World Scientific
Published: 2016-06-24
Total Pages: 896
ISBN-13: 9814699241
DOWNLOAD EBOOKThis 2-volume set provides the reader with a basic understanding of the foundational concepts pertaining to the design, synthesis, and applications of conjugated organic materials used as organic semiconductors, in areas including organic photovoltaic devices, light-emitting diodes, field-effect transistors, spintronics, actuation, bioelectronics, thermoelectrics, and nonlinear optics.While there are many monographs in these various areas, the emphasis here is both on the fundamental chemistry and physics concepts underlying the field of organic semiconductors and on how these concepts drive a broad range of applications. This makes the volumes ideal introductory textbooks in the subject. They will thus offer great value to both junior and senior scientists working in areas ranging from organic chemistry to condensed matter physics and materials science and engineering.Number of Illustrations and Tables: 168 b/w illus., 242 colour illus., 13 tables.
Author:
Publisher: Academic Press
Published: 2000-10-18
Total Pages: 349
ISBN-13: 0080865194
DOWNLOAD EBOOKSolid State Physics
Author: Christoph Brabec
Publisher: John Wiley & Sons
Published: 2011-09-22
Total Pages: 597
ISBN-13: 3527623205
DOWNLOAD EBOOKProviding complementary viewpoints from academia as well as technology companies, this book covers the three most important aspects of successful device design: materials, device physics, and manufacturing technologies. It also offers an insight into commercialization concerns, such as packaging technologies, system integration, reel-to-reel large scale manufacturing issues and production costs. With an introduction by Nobel Laureate Alan Heeger.
Author: Terje A. Skotheim
Publisher: CRC Press
Published: 2007-01-16
Total Pages: 1692
ISBN-13: 1420095293
DOWNLOAD EBOOKLearn how recent advances are fueling new possibilities in textiles, optics, electronics, and biomedicine! As the field of conjugated, electrically conducting, and electroactive polymers has grown, the Handbook of Conducting Polymers has been there to document and celebrate these changes along the way. Now split into two vo
Author:
Publisher:
Published: 2007
Total Pages: 960
ISBN-13:
DOWNLOAD EBOOKAuthor: Vivian W. W. Yam
Publisher: Springer Science & Business Media
Published: 2010-11-19
Total Pages: 245
ISBN-13: 3642149359
DOWNLOAD EBOOKA major global issue that the world is facing today is the upcoming depletion of fossil fuels and the energy crisis. In 1998, the global annual energy consumption was 12. 7 TW; of which 80% was generated from fossil fuels. This also translates into huge annual emissions of CO that leads to massive environmental problems, 2 particularly the global warming, which could be disastrous. Future global annual energy needs are also estimated to rise dramatically. A major challenge confronting the world is to ?nd an additional 14–20 TW by 2050 when our energy reserves based on fossil fuels are vanishing. The massive demand for energy would require materials and/or processes that would help to provide new sources of clean ren- able energy or to develop processes that would harvest energy or to better utilize energy in an ef?cient manner. The present monograph, WOLEDs and Organic Photovoltaics – Recent Advances and Applications, focuses on a very important and timely subject of topical interest that deals with the more ef?cient use of energy through white organic light-emitting diodes (WOLEDs) for solid-state lighting and the development of clean sources of renewable energy through the harvesting of light energy for conversion into electrical energy in organic photovoltaics. While LED solid-state lighting and photovoltaics have been dominated by inorganic semiconductor materials and silicon-based solar cells, there have been growing interests in the development of WOLEDs and organic photovoltaics.