Vol. 1. The Sturm-Liouville expansion -- The singular case : series expansions -- The general singular case -- Examples -- The nature of the spectrum -- An alternative method : transform theory -- The distribution of the eigenvalues -- General theorems on eigenfunctions -- Convergence of the expansion under Fourier conditions -- Summability -- vol. 2. Expansions in a rectangle -- Expansions in the whole plane -- Extensions of the theory -- Variation of the eigenvalues : the problem of the general finite region -- Separable equations -- The nature of the spectrum -- The distribution of the eigenvalues -- Convergence and summability theorems -- Perturbation theory -- Perturbation theory involving continuous spectra -- The case in which q(x) is periodic -- Miscellaneous theorems.
The idea of expanding an arbitrary function in terms of the solutions of a second-order differential equation goes back to the time of Sturm and Liouville, more than a hundred years ago. The first satisfactory proofs were constructed by various authors early in the twentieth century. Later, a general theory of the singular cases was given by Weyl, who-based i on the theory of integral equations. An alternative method, proceeding via the general theory of linear operators in Hilbert space, is to be found in the treatise by Stone on this subject. Here I have adopted still another method. Proofs of these expansions by means of contour integration and the calculus of residues were given by Cauchy, and this method has been used by several authors in the ordinary Sturm-Liouville case. It is applied here to the general singular case. It is thus possible to avoid both the theory of integral equations and the general theory of linear operators, though of course we are sometimes doing no more than adapt the latter theory to the particular case considered. The ordinary Sturm-Liouville expansion is now well known. I therefore dismiss it as rapidly as possible, and concentrate on the singular cases, a class which seems to include all the most interesting examples. In order to present a clear-cut theory in a reasonable space, I have had to reject firmly all generalizations. Many of the arguments used extend quite easily to other cases, such as that of two simultaneous first-order equations. It seems that physicists are interested in some aspects of these questions. If any physicist finds here anything that he wishes to know, I shall indeed be delighted but it is to mathematicians that the book is addressed. I believe in the future of mathematics for physicists, but it seems desirable that a writer on this subject should understand physics as well as mathematics.
"The collection contains the papers of mathematicians who are participants of the seminar on Mathematical Physics in Kharkov, Ukraine. The papers are mainly devoted to nontraditional problems of spectral theory, of disordered systems, to the spectral aspects of homogenization, and of properties of ergodic dynamical systems."--ABSTRACT.
This book gives a complete spectral analysis of the non-self-adjoint Schrödinger operator with a periodic complex-valued potential. Building from the investigation of the spectrum and spectral singularities and construction of the spectral expansion for the non-self-adjoint Schrödinger operator, the book features a complete spectral analysis of the Mathieu-Schrödinger operator and the Schrödinger operator with a parity-time (PT)-symmetric periodic optical potential. There currently exists no general spectral theorem for non-self-adjoint operators; the approaches in this book thus open up new possibilities for spectral analysis of some of the most important operators used in non-Hermitian quantum mechanics and optics. Featuring detailed proofs and a comprehensive treatment of the subject matter, the book is ideally suited for graduate students at the intersection of physics and mathematics.
Here is a book that provides the classical foundations of invariant imbedding, a concept that provided the first indication of the connection between transport theory and the Riccati Equation. The reprinting of this classic volume was prompted by a revival of interest in the subject area because of its uses for inverse problems. The major part of the book consists of applications of the invariant imbedding method to specific areas that are of interest to engineers, physicists, applied mathematicians, and numerical analysts. A large set of problems can be found at the end of each chapter. Numerous problems on apparently disparate matters such as Riccati equations, continued fractions, functional equations, and Laplace transforms are included. The exercises present the reader with "real-life" situations. The material is accessible to a general audience, however, the authors do not hesitate to state, and even to prove, a rigorous theorem when one is available. To keep the original flavor of the book, very few changes were made to the manuscript; typographical errors were corrected and slight changes in word order were made to reduce ambiguities.
Many areas of mathematics were deeply influenced or even founded by Hermann Weyl, including geometric foundations of manifolds and physics, topological groups, Lie groups and representation theory, harmonic analysis and analytic number theory as well as foundations of mathematics. In this volume, leading experts present his lasting influence on current mathematics, often connecting Weyl's theorems with cutting edge research in dynamical systems, invariant theory, and partial differential equations. In a broad and accessible presentation, survey chapters describe the historical development of each area alongside up-to-the-minute results, focussing on the mathematical roots evident within Weyl's work.