Efficient Theoretical Screening of Solid Sorbents for CO2 Capture Applications

Efficient Theoretical Screening of Solid Sorbents for CO2 Capture Applications

Author:

Publisher:

Published: 2011

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Carbon dioxide is a major combustion product of coal, which once released into the air can contribute to global climate change. Current CO2 capture technologies for power generation processes including amine solvents and CaO-based sorbent materials require very energy intensive regeneration steps which result in significantly decreased efficiency. Hence, there is a critical need for new materials that can capture and release CO2 reversibly with acceptable energy costs if CO2 is to be captured and sequestered economically. Inorganic sorbents are one such class of materials which typically capture CO2 through the reversible formation of carbonates. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO2 sorbent candidates from the vast array of possible solid materials has been proposed and validated. The ab initio thermodynamic technique has the advantage of identifying thermodynamic properties of CO2 capture reactions without any experimental input beyond crystallographic structural information of the solid phases involved. For a given solid, the first step is to attempt to extract thermodynamic properties from thermodynamic databases and available literatures. If the thermodynamic properties of the compound of interest are unknown, an ab initio thermodynamic approach is used to calculate them. These properties expressed conveniently as chemical potentials and heat of reactions, either from databases or from calculations, are further used for computing the thermodynamic reaction equilibrium properties of the CO2 absorption/desorption cycle based on the chemical potential and heat of reaction. Only those solid materials for which lower capture energy costs are predicted at the desired process conditions are selected as CO2 sorbent candidates and further considered for experimental validations. Solid sorbents containing alkali and alkaline earth metals have been reported in several previous studies to be good candidates for CO2 sorbent applications due to their high CO2 absorption capacity at moderate working temperatures. In addition to introducing our selection process in this presentation, we will present our results for solid systems of alkali and alkaline metal oxides, hydroxides and carbonates/bicarbonates to validate our methodology. Additionally, applications of our computational method to mixed solid systems of Li2O and SiO2 with different mixing ratios, we showed that increasing the Li2O/SiO2 ratio in lithium silicates increases their corresponding turnover temperatures for CO2 capture reactions. These theoretical predictions are in good agreement with available experimental findings.


Theoretical Screening of Mixed Solid Sorbent for Applications to CO2 Capture Technology

Theoretical Screening of Mixed Solid Sorbent for Applications to CO2 Capture Technology

Author:

Publisher:

Published: 2014

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Since current technologies for capturing CO2 to fight global climate change are still too energy intensive, there is a critical need for development of new materials that can capture CO2 reversibly with acceptable energy costs. Accordingly, solid sorbents have been proposed to be used for CO2 capture applications through a reversible chemical transformation. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO2 sorbent candidates from the vast array of possible solid materials has been proposed and validated. The calculated thermodynamic properties of different classes of solid materials versus temperature and pressure changes were further used to evaluate the equilibrium properties for the CO2 adsorption/desorption cycles. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO2 capture reactions by the solids of interest, we were able to screen only those solid materials for which lower capture energy costs are expected at the desired pressure and temperature conditions. Only those selected CO2 sorbent candidates were further considered for experimental validations. The ab initio thermodynamic technique has the advantage of identifying thermodynamic properties of CO2 capture reactions without any experimental input beyond crystallographic structural information of the solid phases involved. Such methodology not only can be used to search for good candidates from existing database of solid materials, but also can provide some guidelines for synthesis new materials. In this presentation, we apply our screening methodology to mixing solid systems to adjust the turnover temperature to help on developing CO2 capture Technologies.


Theoretical Screening of Mixed Solid Sorbent for Applications to CO{sub 2} Capture Technology

Theoretical Screening of Mixed Solid Sorbent for Applications to CO{sub 2} Capture Technology

Author:

Publisher:

Published: 2014

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Since current technologies for capturing CO2 to fight global climate change are still too energy intensive, there is a critical need for development of new materials that can capture CO2 reversibly with acceptable energy costs. Accordingly, solid sorbents have been proposed to be used for CO2 capture applications through a reversible chemical transformation. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO2 sorbent candidates from the vast array of possible solid materials has been proposed and validated. The calculated thermodynamic properties of different classes of solid materials versus temperature and pressure changes were further used to evaluate the equilibrium properties for the CO2 adsorption/desorption cycles. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO2 capture reactions by the solids of interest, we were able to screen only those solid materials for which lower capture energy costs are expected at the desired pressure and temperature conditions. Only those selected CO2 sorbent candidates were further considered for experimental validations. The ab initio thermodynamic technique has the advantage of identifying thermodynamic properties of CO2 capture reactions without any experimental input beyond crystallographic structural information of the solid phases involved. Such methodology not only can be used to search for good candidates from existing database of solid materials, but also can provide some guidelines for synthesis new materials. In this presentation, we apply our screening methodology to mixing solid systems to adjust the turnover temperature to help on developing CO2 capture Technologies.


Theoretical Screening of Solid Sorbents for CO{sub 2} Capture Applications

Theoretical Screening of Solid Sorbents for CO{sub 2} Capture Applications

Author:

Publisher:

Published: 2013

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The work reported in this presentation was establishing a theoretical procedure to identify most potential candidates of CO2 solid sorbents from a large solid material databank; and to explore the optimal working conditions for the promised CO2 solid sorbents and provide guidelines to the experimentalists. Our methodology can predict thermodynamic properties of solid materials and their CO2 capture reactions. Single solid may not satisfy the industrial operating conditions as CO2 sorbent, however, by mixing two or more solids, the new formed solid may satisfy the industrial needs. By exploring series of lithium silicates with different Li2O/SiO2 ratio, we found that with decreasing Li2O/SiO2 ratio the corresponding silicate has a lower turnover temperature and vice versa. Compared to pure MgO, the Na2CO3, K2CO3 and CaCO3 promoted MgO sorbent has a higher turnover T. These results provide guidelines to synthesize sorbent materials by mixing different solids with different ratio.


Theoretical Screening of Solid Sorbents for CO2 Capture Applications

Theoretical Screening of Solid Sorbents for CO2 Capture Applications

Author:

Publisher:

Published: 2013

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The work reported in this presentation was establishing a theoretical procedure to identify most potential candidates of CO2 solid sorbents from a large solid material databank; and to explore the optimal working conditions for the promised CO2 solid sorbents and provide guidelines to the experimentalists. Our methodology can predict thermodynamic properties of solid materials and their CO2 capture reactions. Single solid may not satisfy the industrial operating conditions as CO2 sorbent, however, by mixing two or more solids, the new formed solid may satisfy the industrial needs. By exploring series of lithium silicates with different Li2O/SiO2 ratio, we found that with decreasing Li2O/SiO2 ratio the corresponding silicate has a lower turnover temperature and vice versa. Compared to pure MgO, the Na2CO3, K2CO3 and CaCO3 promoted MgO sorbent has a higher turnover T. These results provide guidelines to synthesize sorbent materials by mixing different solids with different ratio.


Theoretical Screening of Solid Sorbents for CO{sub 2} Capture

Theoretical Screening of Solid Sorbents for CO{sub 2} Capture

Author:

Publisher:

Published: 2013

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

By combining thermodynamic database searches with density functional theory and lattice phonon dynamics, a screening methodology was developed to identify promising solid sorbent candidates for CO2 capture. This methodology has been used to screen hundreds of solid compounds and some of the promising candidates to date have been reported in literature. This screening methodology is particularly relevant for the case of materials for which experimental thermodynamic data is not available. Such areas of interest are represented by the case of solid mixtures and doped materials, where thermodynamic data are generally not available but for which the crystallographic structure is known or can be easily determined.


Theoretical Calculating the Thermodynamic Properties of Solid Sorbents for CO{sub 2} Capture Applications

Theoretical Calculating the Thermodynamic Properties of Solid Sorbents for CO{sub 2} Capture Applications

Author:

Publisher:

Published: 2012

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Since current technologies for capturing CO2 to fight global climate change are still too energy intensive, there is a critical need for development of new materials that can capture CO2 reversibly with acceptable energy costs. Accordingly, solid sorbents have been proposed to be used for CO2 capture applications through a reversible chemical transformation. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO2 sorbent candidates from the vast array of possible solid materials has been proposed and validated. The calculated thermodynamic properties of different classes of solid materials versus temperature and pressure changes were further used to evaluate the equilibrium properties for the CO2 adsorption/desorption cycles. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO2 capture reactions by the solids of interest, we were able to screen only those solid materials for which lower capture energy costs are expected at the desired pressure and temperature conditions. Only those selected CO2 sorbent candidates were further considered for experimental validations. The ab initio thermodynamic technique has the advantage of identifying thermodynamic properties of CO2 capture reactions without any experimental input beyond crystallographic structural information of the solid phases involved. Such methodology not only can be used to search for good candidates from existing database of solid materials, but also can provide some guidelines for synthesis new materials. In this presentation, we first introduce our screening methodology and the results on a testing set of solids with known thermodynamic properties to validate our methodology. Then, by applying our computational method to several different kinds of solid systems, we demonstrate that our methodology can predict the useful information to help developing CO2 capture Technologies.


Theoretical Screening of Mixed Solid Sorbents for CO{sub 2} Capture

Theoretical Screening of Mixed Solid Sorbents for CO{sub 2} Capture

Author:

Publisher:

Published: 2013

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

We are establishing a theoretical procedure to identify most potential candidates of CO2 solid sorbents from a large solid material databank to meet the DOE programmatic goal for energy conversion; A further objective is to explore the optimal working conditions for the promised CO2 solid sorbents, especially from room to warm T ranges with optimal energy usage, used for both pre- and post-combustion capture technologies.


Handbook of Climate Change Mitigation

Handbook of Climate Change Mitigation

Author: Wei-Yin Chen

Publisher: Springer

Published: 2012-02-13

Total Pages: 2130

ISBN-13: 9781441979926

DOWNLOAD EBOOK

There is a mounting consensus that human behavior is changing the global climate and its consequence could be catastrophic. Reducing the 24 billion metric tons of carbon dioxide emissions from stationary and mobile sources is a gigantic task involving both technological challenges and monumental financial and societal costs. The pursuit of sustainable energy resources, environment, and economy has become a complex issue of global scale that affects the daily life of every citizen of the world. The present mitigation activities range from energy conservation, carbon-neutral energy conversions, carbon advanced combustion process that produce no greenhouse gases and that enable carbon capture and sequestion, to other advanced technologies. From its causes and impacts to its solutions, the issues surrounding climate change involve multidisciplinary science and technology. This handbook will provide a single source of this information. The book will be divided into the following sections: Scientific Evidence of Climate Change and Societal Issues, Impacts of Climate Change, Energy Conservation, Alternative Energies, Advanced Combustion, Advanced Technologies, and Education and Outreach.


Integrated Gasification Combined Cycle (IGCC) Technologies

Integrated Gasification Combined Cycle (IGCC) Technologies

Author: Ting Wang

Publisher: Woodhead Publishing

Published: 2016-11-26

Total Pages: 929

ISBN-13: 0081001851

DOWNLOAD EBOOK

Integrated Gasification Combined Cycle (IGCC) Technologies discusses this innovative power generation technology that combines modern coal gasification technology with both gas turbine and steam turbine power generation, an important emerging technology which has the potential to significantly improve the efficiencies and emissions of coal power plants. The advantages of this technology over conventional pulverized coal power plants include fuel flexibility, greater efficiencies, and very low pollutant emissions. The book reviews the current status and future developments of key technologies involved in IGCC plants and how they can be integrated to maximize efficiency and reduce the cost of electricity generation in a carbon-constrained world. The first part of this book introduces the principles of IGCC systems and the fuel types for use in IGCC systems. The second part covers syngas production within IGCC systems. The third part looks at syngas cleaning, the separation of CO2 and hydrogen enrichment, with final sections describing the gas turbine combined cycle and presenting several case studies of existing IGCC plants. Provides an in-depth, multi-contributor overview of integrated gasification combined cycle technologies Reviews the current status and future developments of key technologies involved in IGCC plants Provides several case studies of existing IGCC plants around the world