Efficient Numerical Methods and Information-Processing Techniques for Modeling Hydro- and Environmental Systems

Efficient Numerical Methods and Information-Processing Techniques for Modeling Hydro- and Environmental Systems

Author: Reinhard Hinkelmann

Publisher: Springer Science & Business Media

Published: 2006-08-10

Total Pages: 320

ISBN-13: 3540323791

DOWNLOAD EBOOK

Numerical simulation models have become indispensable in hydro- and environmental sciences and engineering. This monograph presents a general introduction to numerical simulation in environment water, based on the solution of the equations for groundwater flow and transport processes, for multiphase and multicomponent flow and transport processes in the subsurface as well as for flow and transport processes in surface waters. It displays in detail the state of the art of discretization and stabilization methods (e.g. finite-difference, finite-element, and finite-volume methods), parallel methods, and adaptive methods as well as fast solvers, with particular focus on explaining the interactions of the different methods. The book gives a brief overview of various information-processing techniques and demonstrates the interactions of the numerical methods with the information-processing techniques, in order to achieve efficient numerical simulations for a wide range of applications in environment water.


Numerical Methods for Nonsmooth Dynamical Systems

Numerical Methods for Nonsmooth Dynamical Systems

Author: Vincent Acary

Publisher: Springer Science & Business Media

Published: 2008-01-30

Total Pages: 529

ISBN-13: 3540753923

DOWNLOAD EBOOK

This book concerns the numerical simulation of dynamical systems whose trajec- ries may not be differentiable everywhere. They are named nonsmooth dynamical systems. They make an important class of systems, rst because of the many app- cations in which nonsmooth models are useful, secondly because they give rise to new problems in various elds of science. Usually nonsmooth dynamical systems are represented as differential inclusions, complementarity systems, evolution va- ational inequalities, each of these classes itself being split into several subclasses. The book is divided into four parts, the rst three parts being sketched in Fig. 0. 1. The aim of the rst part is to present the main tools from mechanics and applied mathematics which are necessary to understand how nonsmooth dynamical systems may be numerically simulated in a reliable way. Many examples illustrate the th- retical results, and an emphasis is put on mechanical systems, as well as on electrical circuits (the so-called Filippov’s systems are also examined in some detail, due to their importance in control applications). The second and third parts are dedicated to a detailed presentation of the numerical schemes. A fourth part is devoted to the presentation of the software platform Siconos. This book is not a textbook on - merical analysis of nonsmooth systems, in the sense that despite the main results of numerical analysis (convergence, order of consistency, etc. ) being presented, their proofs are not provided.


Advances in Hydroinformatics

Advances in Hydroinformatics

Author: Philippe Gourbesville

Publisher: Springer

Published: 2018-02-26

Total Pages: 1205

ISBN-13: 9811072183

DOWNLOAD EBOOK

This book gathers a collection of extended papers based on presentations given during the SimHydro 2017 conference, held in Sophia Antipolis, Nice, France on June 14–16, 2017. It focuses on how to choose the right model in applied hydraulics and considers various aspects, including the modeling and simulation of fast hydraulic transients, 3D modeling, uncertainties and multiphase flows. The book explores both limitations and performance of current models and presents the latest developments in new numerical schemes, high-performance computing, multiphysics and multiscale methods, and better interaction with field or scale model data. It gathers the lastest theoretical and innovative developments in the modeling field and presents some of the most advance applications on various water related topics like uncertainties, flood simulation and complex hydraulic applications. Given its breadth of coverage, it addresses the needs and interests of practitioners, stakeholders, researchers and engineers alike.


Masonry Constructions: Mechanical Models and Numerical Applications

Masonry Constructions: Mechanical Models and Numerical Applications

Author: Massimiliano Lucchesi

Publisher: Springer Science & Business Media

Published: 2008-05-13

Total Pages: 168

ISBN-13: 3540791116

DOWNLOAD EBOOK

Many historically and artistically important masonry buildings of the world’s architecturalheritageareindireneedofmaintenanceandrestoration.Inorder tooptimizesuchoperationsintermsofcost-e?ectiveness,architecturalimpact andstatice?ectiveness,accuratemodelsofthestructuralbehaviorofmasonry constructions are invaluable. The ultimate aim of such modeling is to obtain important information, such as the stress ?eld, and to estimate the extent of cracking and its evolution when the structure is subjected to variations in both boundary and loading conditions. Although masonry has been used in building for centuries, it is only - centlythatconstitutivemodelsandcalculationtechniqueshavebeenavailable that enable realistic description of the static behavior of structures made of this heterogeneous material whose response to tension is fundamentally d- ferent from that to compression. Important insights on the mechanical behavior of masonry arches and vaults come from as far back as Leonardo [10], Hooke [58], Poleni [92] and many other authors (see [47], [9] and [10] for detailed references). Castigliano, in his famous paper on the Mosca bridge [23], and Signorini, in his studies on masonry beams [97], [98], showed both the possibility and necessity of taking into account the weak tensile strength of masonry material.


Mechanical Modelling and Computational Issues in Civil Engineering

Mechanical Modelling and Computational Issues in Civil Engineering

Author: Michel Fremond

Publisher: Springer Science & Business Media

Published: 2006-07-16

Total Pages: 405

ISBN-13: 3540323996

DOWNLOAD EBOOK

In this edited book various novel approaches to problems of modern civil engineering are demonstrated. Experts associated within the Lagrange Laboratory present recent research results in civil engineering dealing both with modelling and computational aspects. Many modern topics are covered, such as monumental dams, soil mechanics and geotechnics, granular media, contact and friction problems, damage and fracture, new structural materials, and vibration damping – presenting the state of the art of mechanical modelling and computational issues in civil engineering.


Spectral Method in Multiaxial Random Fatigue

Spectral Method in Multiaxial Random Fatigue

Author: Adam Nieslony

Publisher: Springer Science & Business Media

Published: 2007-09-04

Total Pages: 148

ISBN-13: 3540738231

DOWNLOAD EBOOK

This monograph examines the theoretical foundations of the spectral method for fatigue life determination. The authors discuss a rule of description of random loading states with the matrix of power spectral density functions of the stress/strain tensor components. Some chosen criteria of multiaxial fatigue failure are analyzed. The formula proposed in this book enables readers to determine power spectral density of the equivalent history directly from the components of the power spectral density matrix of the multidimensional stochastic process.


Kinematics and Dynamics of Multibody Systems with Imperfect Joints

Kinematics and Dynamics of Multibody Systems with Imperfect Joints

Author: Paulo Flores

Publisher: Springer Science & Business Media

Published: 2008-01-10

Total Pages: 182

ISBN-13: 3540743618

DOWNLOAD EBOOK

This book presents suitable methodologies for the dynamic analysis of multibody mechanical systems with joints. It contains studies and case studies of real and imperfect joints. The book is intended for researchers, engineers, and graduate students in applied and computational mechanics.


Discrete Element Analysis Methods of Generic Differential Quadratures

Discrete Element Analysis Methods of Generic Differential Quadratures

Author: Chang-New Chen

Publisher: Springer Science & Business Media

Published: 2008-09-12

Total Pages: 284

ISBN-13: 3540311858

DOWNLOAD EBOOK

Following the advance in computer technology, the numerical technique has made signi?cant progress in the past decades. Among the major techniques available for numerically analyzing continuum mechanics problems, ?nite d- ference method is most early developed. It is di?cult to deal with cont- uum mechanics problems showing complex curvilinear geometries by using this method. The other method that can consistently discretize continuum mechanics problems showing arbitrarily complex geometries is ?nite element method. In addition, boundary element method is also a useful numerical method. In the past decade, the di?erential quadrature and generic di?erential quadraturesbaseddiscreteelementanalysismethodshavebeendevelopedand usedto solve various continuum mechanics problems. These methods have the same advantage as ?nite element method of consistently discretizing cont- uum mechanics problems having arbitrarily complex geometries. This book includes my research results obtained in developing the related novel discrete element analysis methods using both of the extended di?erential quadrature based spacial and temporal elements. It is attempted to introduce the dev- oped numerical techniques as applied to the solution of various continuum mechanics problems, systematically.


Stability and Convergence of Mechanical Systems with Unilateral Constraints

Stability and Convergence of Mechanical Systems with Unilateral Constraints

Author: Remco I. Leine

Publisher: Springer Science & Business Media

Published: 2007-12-29

Total Pages: 241

ISBN-13: 3540769757

DOWNLOAD EBOOK

While the stability theory for systems with bilateral constraints is a well-established field, this monograph represents a systematic study of mechanical systems with unilateral constraints, such as unilateral contact, impact and friction. Such unilateral constraints give rise to non-smooth dynamical models for which stability theory is developed in this work. The book will be of interest to those working in the field of non-smooth mechanics and dynamics.


Uncertainty Assessment of Large Finite Element Systems

Uncertainty Assessment of Large Finite Element Systems

Author: Christian A. Schenk

Publisher: Springer Science & Business Media

Published: 2005-06-08

Total Pages: 184

ISBN-13: 9783540253433

DOWNLOAD EBOOK

The treatment of uncertainties in the analysis of engineering structures remains one of the premium challenges in modern structural mechanics. It is only in recent years that the developments in stochastic and deterministic computational mechanics began to be synchronized. To foster these developments, novel computational procedures for the uncertainty assessment of large finite element systems are presented in this monograph. The stochastic input is modeled by the so-called Karhunen-Loève expansion, which is formulated in this context both for scalar and vector stochastic processes as well as for random fields. Particularly for strongly non-linear structures and systems the direct Monte Carlo simulation technique has proven to be most advantageous as method of solution. The capabilities of the developed procedures are demonstrated by showing some practical applications.