Effects of High Commodity Prices on Western Kansas Crop Patterns and the Ogallala Aquifer

Effects of High Commodity Prices on Western Kansas Crop Patterns and the Ogallala Aquifer

Author: Matthew Ken Clark

Publisher:

Published: 2009

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The expansion of the biofuels industry, world demand, and various other factors are having a historic impact on the price of grains. These high prices have been creating a large increase in production of many water intensive crops such as corn. As corn is among the most input-intensive crops, this extra production has raised concerns about environmental impacts and pressures on water resources in particular. While water quality has been a longstanding concern in the cornbelt, much of the new production is in nontraditional corn regions including the southeast, the High Plains, and the western states. In these areas, there is mounting concern over depletion of already stressed water supplies. In the High Plains, the chief water source is the Ogallala aquifer, one of the largest water resources in the world that underlies eight states from South Dakota to Texas. The Ogallala has enabled many agricultural industries, such as irrigated crops, cattle feeding, and meat processing, to establish themselves in areas that would not be possible otherwise. A consequence is that the economy of this region has become dependent on groundwater availability. Continued overdrafts of the aquifer have caused a long-term drop in water levels and some areas have now reached effective depletion. This thesis seeks to estimate the impact of the rising commodity prices on groundwater consumption and cropping patterns in the Kansas portion of the Ogallala. The economy of this region is particularly dependent on water and irrigated crops, with more than 3 million head of feeder cattle and irrigated crop revenues exceeding $600 million annually. Sheridan (northwestern Kansas), Seward (southwestern Kansas), and Scott (west central Kansas) counties have been selected as representative case study regions. These counties have a wide range of aquifer levels with Seward having an abundant supply, Sheridan an intermediate supply, and Scott nearing effective depletion. Cropping patterns in these counties are typical of the western Kansas region, with most irrigated acreage being planted to corn and with dominant nonirrigated rotations of wheat-fallow and wheat-sorghum-fallow. A Positive Mathematical Programming (PMP) model was developed and calibrated to land- and water-use data in the case counties for a base period of 1999-2003. The PMP approach produces a constrained nonlinear optimization model that mimics the land- and water- allocation decision facing producers each year. The choice variables in the model are the acreages planted to each of the major crops and the water use by crop. The model was run for each of the case counties. The PMP calibration procedure ensures that the model solutions fall within a small tolerance of the base period observations. Once calibrated, the models were executed to simulate the impacts of the emerging energy demand for crops over a 60-year period. After the baseline projections were found, the model was then run under increased crop prices that reflect the higher prices observed in 2006 and after. The thesis found that under the high price scenario, both irrigated crop production and water application per acre increased significantly during the early years of the simulated period in all modeled counties. The size of the increases depended on the amount of original water available in each county. The increases generally diminished in magnitude toward the end of the simulation period, but led to smaller ending levels of saturated thickness as compared to the base price in all counties. Finally, in two of the three counties, it was observed that initial increases in irrigated crop acres and water application forces a decline in the aquifer such that less water can be applied per acre in the final years of the simulation. This suggests that high commodity prices forces a higher emphasis on early production levels than later production levels. Additionally, the higher prices have a significant effect on the rate of decline of the Ogallala aquifer.


The Impact of Discount Rate and Price on Intertemporal Groundwater Models in Southwest Kansas

The Impact of Discount Rate and Price on Intertemporal Groundwater Models in Southwest Kansas

Author: Logan Harkey

Publisher:

Published: 2016

Total Pages: 156

ISBN-13:

DOWNLOAD EBOOK

Agriculture plays a vital role in the growth and development of the High Plains Region of the United States. Historically, early settlers in the semi-arid region were plagued by crop failures largely due to drought; however, affordable irrigation technology aided in the transformation of the High Plains into one of the most agriculturally productive regions in the world (Peterson et al., 2003). The primary source of irrigation in this region is the Ogallala Aquifer. Spanning approximately 174,000 square miles, the aquifer lies under parts of Texas, New Mexico, Oklahoma, Colorado, Kansas, Nebraska, Wyoming, and South Dakota (Alley et al., 1999). Currently, water from the aquifer is being used at a much faster rate than natural recharge can occur, resulting in a high rate of depletion from this finite resource. Depletion of scarce water resources will have a significant economic impact on the long term sustainability of the region. The objective of this study is to evaluate the impact alternative prices and discount rates have on groundwater policy recommendations. Deterministic models of groundwater withdrawals were developed and used in order to analyze and evaluate the impact of high, average, and low crop prices in a status quo scenario as well as a policy scenario reducing irrigated acreage allocation. Furthermore, this study analyzes the effects and associated consequences of alternative discount rates on net and total revenue. As indicated by results of this study, alternative prices, costs, and discount rates utilized in a model have an effect on the resulting policy recommendations. These assumptions play a significant role in determining what measures of groundwater policy should be implemented. Considering the declining levels of saturated thickness seen in the results of this study, the analysis of alternative discount rates and the associated policy recommendations is merited.


GIS-based Coupled Cellular Automaton Model to Allocate Irrigated Agriculture Land Use in the High Plains Aquifer Region

GIS-based Coupled Cellular Automaton Model to Allocate Irrigated Agriculture Land Use in the High Plains Aquifer Region

Author: Peiwen Wang

Publisher:

Published: 2013

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The Kansas High Plains region is a key global agricultural production center (U.S.G.S, 2009). The High Plains physiography is ideal agricultural production landscape except for the semi-arid climate. Consequently, farmers mine vast groundwater resources from the High Plains Ogallala Aquifer formations to augment precipitation for crop production. Growing global population, current policy and subsidy programs, declining aquifer levels coupled with regional climatic changes call into question both short-term and long-term resilience of this agrarian landscape and food and water security. This project proposes a means to simulate future irrigated agriculture land use and crop cover patterns in the Kansas High Plains Aquifer region based on coupled modeling results from ongoing research at Kansas State University. A Cellular Automata (CA) modeling framework is used to simulate potential land use distribution, based on coupled modeling results from groundwater, economic, and crop models. The CA approach considers existing infrastructure resources, industrial and commercial systems, existing land use patterns, and suitability modeling results for agricultural production. The results of the distribution of irrigated land produced from the CA model provide necessary variable inputs for the next temporal coupled modeling iteration. For example, the groundwater model estimates water availability in saturated thickness and depth to water. The economic model projects which crops will be grown based on water availability and commodity prices at a county scale. The crop model estimates potential yield of a crop under specific soil, climate and growing conditions which further informs the economic model providing an estimate of profit, which informs regional economic and population models. Integrating the CA model into the coupled modeling system provides a key linkage to simulate spatial patterns of irrigated land use and crop type land cover based on coupled model results. Implementing the CA model in GIS offers visualization of coupled model components and results as well as the CA model land use and land cover. The project outcome hopes to afford decision-makers, including farmers, the ability to use the actual landscape data and the developed coupled modeling framework to strategically inform decisions with long-term resiliency.


A Framework for Assessing Effects of the Food System

A Framework for Assessing Effects of the Food System

Author: National Research Council

Publisher: National Academies Press

Published: 2015-06-17

Total Pages: 340

ISBN-13: 030930783X

DOWNLOAD EBOOK

How we produce and consume food has a bigger impact on Americans' well-being than any other human activity. The food industry is the largest sector of our economy; food touches everything from our health to the environment, climate change, economic inequality, and the federal budget. From the earliest developments of agriculture, a major goal has been to attain sufficient foods that provide the energy and the nutrients needed for a healthy, active life. Over time, food production, processing, marketing, and consumption have evolved and become highly complex. The challenges of improving the food system in the 21st century will require systemic approaches that take full account of social, economic, ecological, and evolutionary factors. Policy or business interventions involving a segment of the food system often have consequences beyond the original issue the intervention was meant to address. A Framework for Assessing Effects of the Food System develops an analytical framework for assessing effects associated with the ways in which food is grown, processed, distributed, marketed, retailed, and consumed in the United States. The framework will allow users to recognize effects across the full food system, consider all domains and dimensions of effects, account for systems dynamics and complexities, and choose appropriate methods for analysis. This report provides example applications of the framework based on complex questions that are currently under debate: consumption of a healthy and safe diet, food security, animal welfare, and preserving the environment and its resources. A Framework for Assessing Effects of the Food System describes the U.S. food system and provides a brief history of its evolution into the current system. This report identifies some of the real and potential implications of the current system in terms of its health, environmental, and socioeconomic effects along with a sense for the complexities of the system, potential metrics, and some of the data needs that are required to assess the effects. The overview of the food system and the framework described in this report will be an essential resource for decision makers, researchers, and others to examine the possible impacts of alternative policies or agricultural or food processing practices.