This book comprises 26 articles on the EChO science cases, mission pre-assessment and assessment, phase-studies, the payload, the instrumentation and software. They are reprints of articles published in a special issue on EChO – Exoplanet Characterisation Observatory of the journal Experimental Astronomy. Originally published in Experimental Astronomy, Volume 40, Nos. 2-3 (2015)
The early development of life, a fundamental question for humankind, requires the presence of a suitable planetary climate. Our understanding of how habitable planets come to be begins with the worlds closest to home. Venus, Earth, and Mars differ only modestly in their mass and distance from the Sun, yet their current climates could scarcely be more divergent. Only Earth has abundant liquid water, Venus has a runaway greenhouse, and evidence for life-supporting conditions on Mars points to a bygone era. In addition, an Earth-like hydrologic cycle has been revealed in a surprising place: Saturn’s cloud-covered satellite Titan has liquid hydrocarbon rain, lakes, and river networks. Deducing the initial conditions for these diverse worlds and unraveling how and why they diverged to their current climates is a challenge at the forefront of planetary science. Through the contributions of more than sixty leading experts in the field, Comparative Climatology of Terrestrial Planets sets forth the foundations for this emerging new science and brings the reader to the forefront of our current understanding of atmospheric formation and climate evolution. Particular emphasis is given to surface-atmosphere interactions, evolving stellar flux, mantle processes, photochemistry, and interactions with the interplanetary environment, all of which influence the climatology of terrestrial planets. From this cornerstone, both current professionals and most especially new students are brought to the threshold, enabling the next generation of new advances in our own solar system and beyond. Contents Part I: Foundations Jim Hansen Mark Bullock Scot Rafkin Caitlin Griffith Shawn Domagal-Goldman and Antigona Segura Kevin Zahnle Part II: The Greenhouse Effect and Atmospheric Dynamics Curt Covey G. Schubert and J. Mitchell Tim Dowling Francois Forget and Sebastien Lebonnois Vladimir Krasnopolsky Adam Showman Part III: Clouds, Hazes, and Precipitation Larry Esposito A. Määttänen, K. Pérot, F. Montmessin, and A. Hauchecorne Nilton Renno Zibi Turtle Mark Marley Part IV: Surface-Atmosphere Interactions Colin Goldblatt Teresa Segura et al. John Grotzinger Adrian Lenardic D. A. Brain, F. Leblanc, J. G. Luhmann, T. E. Moore, and F. Tian Part V: Solar Influences on Planetary Climate Aaron Zent Jerry Harder F. Tian, E. Chassefiere, F. Leblanc, and D. Brain David Des Marais
The book presents a collection of selected papers from the I Workshop of the Venezuelan Society of Fluid Mechanics held on Margarita Island, Venezuela from November 4 to 9, 2012. Written by experts in their respective fields, the contributions are organized into five parts: - Part I Invited Lectures, consisting of full-length technical papers on both computational and experimental fluid mechanics covering a wide range of topics from drops to multiphase and granular flows to astrophysical flows, - Part II Drops, Particles and Waves - Part III Multiphase and Multicomponent Flows - Part IV Atmospheric and Granular Flows - and Part V Turbulent and Astrophysical Flows. The book is intended for upper-level undergraduate and graduate students as well as for physicists, chemists and engineers teaching and working in the field of fluid mechanics and its applications. The contributions are the result of recent advances in theoretical and experimental research in fluid mechanics, encompassing both fundamentals as well as applications to fluid engineering design, including pipelines, turbines, flow separators, hydraulic systems and biological fluid elements, and to granular, environmental and astrophysical flows.
What is life and where can it exist? What searches are being made to identify conditions for life on other worlds? If extraterrestrial inhabited worlds are found, how can we explore them? In this book, two leading astrophysicists provide an engaging account of where we stand in our quest for habitable environments, in the Solar System and beyond. Starting from basic concepts, the narrative builds scientifically, including more in-depth material as boxed additions to the main text. The authors recount fascinating recent discoveries from space missions and observations using ground-based telescopes, of possible life-related artefacts in Martian meteorites, extrasolar planets, and subsurface oceans on Europa, Titan and Enceladus. They also provide a forward look to future missions. This is an exciting, informative read for anyone interested in the search for habitable and inhabited planets, and an excellent primer for students in astrobiology, habitability, planetary science and astronomy.
Astrobiology is an exciting interdisciplinary field that seeks to answer one of the most important and profound questions: are we alone? In this volume, leading international experts explore the frontiers of astrobiology, investigating the latest research questions that will fascinate a wide interdisciplinary audience at all levels. What is the earliest evidence for life on Earth? Where are the most likely sites for life in the Solar System? Could life have evolved elsewhere in the Galaxy? What are the best strategies for detecting intelligent extraterrestrial life? How many habitable or Earth-like exoplanets are there? Progress in astrobiology over the past decade has been rapid and, with evidence accumulating that Mars once hosted standing bodies of liquid water, the discovery of over 500 exoplanets and new insights into how life began on Earth, the scientific search for our origins and place in the cosmos continues.
The revolutionary discovery of thousands of confirmed and candidate planets beyond the solar system brings forth the most fundamental question: How do planets and their host stars form and evolve? Protostars and Planets VI brings together more than 250 contributing authors at the forefront of their field, conveying the latest results in this research area and establishing a new foundation for advancing our understanding of stellar and planetary formation. Continuing the tradition of the Protostars and Planets series, this latest volume uniquely integrates the cross-disciplinary aspects of this broad field. Covering an extremely wide range of scales, from the formation of large clouds in our Milky Way galaxy down to small chondrules in our solar system, Protostars and Planets VI takes an encompassing view with the goal of not only highlighting what we know but, most importantly, emphasizing the frontiers of what we do not know. As a vehicle for propelling forward new discoveries on stars, planets, and their origins, this latest volume in the Space Science Series is an indispensable resource for both current scientists and new students in astronomy, astrophysics, planetary science, and the study of meteorites.
Fifty years after Sputnik, artificial satellites have become indispensable monitors in many areas, such as economics, meteorology, telecommunications, navigation and remote sensing. The specific orbits are important for the proper functioning of the satellites. This book discusses the great variety of satellite orbits, both in shape (circular to highly elliptical) and properties (geostationary, Sun-synchronous, etc.). This volume starts with an introduction into geodesy. This is followed by a presentation of the fundamental equations of mechanics to explain and demonstrate the properties for all types of orbits. Numerous examples are included, obtained through IXION software developed by the author. The book also includes an exposition of the historical background that is necessary to help the reader understand the main stages of scientific thought from Kepler to GPS. This book is intended for researchers, teachers and students working in the field of satellite technology. Engineers, geographers and all those involved in space exploration will find this information valuable. Michel Capderou’s book is an essential treatise in orbital mechanics for all students, lecturers and practitioners in this field, as well as other aerospace systems engineers. —Charles Elachi, Director, NASA Jet Propulsion Laboratory
This book presents three major studies covering exomoon and exoplanet detection and characterisation. Firstly, it reports the observations and analysis of the atmosphere of the hot Neptune GJ3470b, one of the lowest-mass planets with a measured atmosphere, using transmission spectroscopy techniques. The result provided improved measurements of Rayleigh scattering in the atmosphere and the first limits on additional planetary companions in the system. The second part discusses modeling a Kepler-like satellite’s ability of a to detect exomoons by looking for transit timing variations and transit duration variations, demonstrating how exomoons can unambiguously be identified from such data.Lastly, the book examines the development of a state-of-the-art Galactic microlensing simulator, which has been made publicly available. It was used to compare with the largest published sample of microlensing events from the MOA-II survey.