"This is a truly astonishing book, invaluable for anyone with an interest in astronomy." Physics Bulletin "Just the thing for a first year university science course." Nature "This is a beautiful book in both concept and execution." Sky & Telescope
The Physics of the Early Universe is an edited and expanded version of the lectures given at a recent summer school of the same name. Its aim is to present an advanced multi-authored textbook that meets the needs of both postgraduate students and young researchers interested in, or already working on, problems in cosmology and general relativity, with emphasis on the early universe. A particularly strong feature of the present work is the constructive-critical approach to the present mainstream theories, the careful assessment of some alternative approaches, and the overall balance between theoretical and observational considerations. As such, this book will also benefit experienced scientists and nonspecialists from related areas of research.
This book presents a new approach to the subject of cosmology. It fully exploits Einstein?s theory of general relativity. It is found that the most general formal expression of the theory replaces the (10-component) tensor formalism with a (16-component) quaternion formalism. This leads to a unified field theory, where one field incorporates gravitation and electromagnetism. The theory predicts an oscillating universe cosmology with a spiral configuration. Dark matter is explained in terms of a sea of particle?antiparticle pairs, each in a particular (derived) ground state. This leads to an explanation for the separation between matter and antimatter in the universe. There is a brief discussion of black holes and pulsars. The final chapter delves into philosophical considerations such as the different types of ?truth?, positivism versus realism and a discussion of the role of the Mach principle in physics and cosmology.
A discussion of the implications for philosophy of recent experimental results that confirm some counterintuitive aspects of the way matter behaves. The authors show that a generalised principle of complementarity is pervasive not only in physical theories such as cosmological models of the universe, but also in the construction of all human realities. They discuss in detail Bells inequalities for quantum mechanical measurements as well as recent experiments which imply that even remote parts of the universe are "entangled." They go on to suggest that consciousness can no longer be divorced from the way science operates, and conclude by claiming that this entails a new way of understanding the universe - one that could obviate much of the current conflict between science and religion while providing at the same time a basis for valuation that is better suited for co-ordinating all human experience. This second edition has been completely rewritten and brought up to date.
This book takes the reader for a short journey over the structures of matter showing that their main properties can be obtained even at a quantitative level with a minimum background knowledge including, besides first year calculus and physics, the extensive use of dimensional analysis and the three cornerstones of science, namely the atomic idea, the wave-particle duality and the minimization of energy as the condition for equilibrium. Dimensional analysis employing the universal physical constants and combined with “a little imagination and thinking”, to quote Feynman, allow an amazing short-cut derivation of several quantitative results concerning the structures of matter. In the current 2nd edition, new material and more explanations with more detailed derivations were added to make the book more student-friendly. Many multiple-choice questions with the correct answers at the end of the book, solved and unsolved problems make the book also suitable as a textbook. This book is of interest to students of physics, engineering and other science and to researchers in physics, material science, chemistry and engineering who may find stimulating the alternative derivation of several real world results which sometimes seem to pop out the magician’s hat.
"The rabbit hole gets wrestled here. An old school saying applies: the more you know, the more you don’t know. Dance along this read into the unknown and find out that this book may be the best ever answer to ‘What is soul?'" —Chuck D, rapper and co-founder of Public Enemy *Starred Reviews* from Kirkus and Publishers Weekly! Named a Best Book of 2021 by Library Journal, Kirkus, and symmetry Magazine In this important guide to science and society, a cosmologist argues that physics must embrace the excluded, listen to the unheard, and be unafraid of being wrong. Years ago, cosmologist Stephon Alexander received life-changing advice: to discover real physics, he needed to stop memorizing and start taking risks. In Fear of a Black Universe, Alexander shows that great physics requires us to think outside the mainstream -- to improvise and rely on intuition. His approach leads him to three principles that shape all theories of the universe: the principle of invariance, the quantum principle, and the principle of emergence. Alexander uses them to explore some of physics' greatest mysteries, from what happened before the big bang to how the universe makes consciousness possible. Drawing on his experience as a Black physicist, he makes a powerful case for diversifying our scientific communities. Compelling and empowering, Fear of a Black Universe offers remarkable insight into the art of physics.
"Tells the story of how astronomers solved one of the most compelling mysteries in science and, along the way, introduces readers to fundamental concepts and cutting-edge advances in modern astronomy"--From publisher description.
A theoretical physicist and feminist theorist, Karen Barad elaborates her theory of agential realism, a schema that is at once a new epistemology, ontology, and ethics.
Not so if the book has been translated into Arabic. Now the reader can discern no meaning in the letters. The text conveys almost no information to the reader, yet the linguistic informa tion contained by the book is virtually the same as in the English original. The reader, familiar with books will still recognise two things, however: First, that the book is a book. Second, that the squiggles on the page represent a pattern of abstractions which probably makes sense to someone who understands the mean ing of those squiggles. Therefore, the book as such, will still have some meaning for the English reader, even if the content of the text has none. Let us go to a more extreme case. Not a book, but a stone, or a rock with engravings in an ancient language no longer under stood by anyone alive. Does such a stone not contain human information even if it is not decipherable? Suppose at some point in the future, basic knowledge about linguistics and clever computer aids allow us to decipher it? Or suppose someone discovers the equivalent of a Rosetta stone which allows us to translate it into a known language, and then into English? Can one really say that the stone contained no information prior to translation? It is possible to argue that the stone, prior to deciphering contained only latent information.