This book provides information on the Earth science remote sensing data information and data format such as HDF-EOS. It evaluates the current data processing approaches and introduces data searching and ordering from different public domains. It further explores the remote sensing and GIS migration products and WebGIS applications. Both volumes are designed to give an introduction to current and future NASA, NOAA and other Earth science remote sensing.
The combined observational power of the multiple earth observing satellites is currently not being harnessed holistically to produce more durable societal benefits. We are not able to take complete advantage of the prolific amount of scientific output and remote sensing data that are emerging rapidly from satellite missions and convert them quickly into decision-making products for users. The current application framework we have appears to be an analog one lacking the absorption bandwidth required to handle scientific research and the voluminous (petabyte-scale) satellite data. This book will tackle this question: "How do we change this course and take full advantage of satellite observational capability for a more sustainable, happier and safer future in the coming decades?"
The new level of precision and global coverage provided by satellite altimetry is rapidly advancing studies of ocean circulation. It allows for new insights into marine geodesy, ice sheet movements, plate tectonics, and for the first time provides high-resolution bathymetry for previously unmapped regions of our watery planet and crucial information on the large-scale ocean features on intra-season to interannual time scales. Satellite Altimetry and Earth Sciences has integrated the expertise of the leading international researchers to demonstrate the techniques, missions, and accuracy of satellite altimetry, including altimeter measurements, orbit determination, and ocean circulation models.Satellite altimetry is helping to advance studies of ocean circulation, tides, sea level, surface waves and allowing new insights into marine geodesy. Satellite Altimetry and Earth Sciences provides high resolution bathymetry for previously unmapped regions of our watery planet.Satellite Altimetry and Earth Sciences is for a very broad spectrum of academics, graduate students, and researchers in geophysics, oceanography, and the space and earth sciences. International agencies that fund satellite-based research will also appreciate the handy reference on the applications of satellite altimetry.
Natural and human-induced changes in Earth's interior, land surface, biosphere, atmosphere, and oceans affect all aspects of life. Understanding these changes requires a range of observations acquired from land-, sea-, air-, and space-based platforms. To assist NASA, NOAA, and USGS in developing these tools, the NRC was asked to carry out a "decadal strategy" survey of Earth science and applications from space that would develop the key scientific questions on which to focus Earth and environmental observations in the period 2005-2015 and beyond, and present a prioritized list of space programs, missions, and supporting activities to address these questions. This report presents a vision for the Earth science program; an analysis of the existing Earth Observing System and recommendations to help restore its capabilities; an assessment of and recommendations for new observations and missions for the next decade; an examination of and recommendations for effective application of those observations; and an analysis of how best to sustain that observation and applications system.
Text discusses earth's gravitational field; matrices and orbital geometry; satellite orbit dynamics; geometry of satellite observations; statistical implications; and data analysis.
Introduction to Satellite Remote Sensing: Atmosphere, Ocean and Land Applications is the first reference book to cover ocean applications, atmospheric applications, and land applications of remote sensing. Applications of remote sensing data are finding increasing application in fields as diverse as wildlife ecology and coastal recreation management. The technology engages electromagnetic sensors to measure and monitor changes in the earth's surface and atmosphere. The book opens with an introduction to the history of remote sensing, starting from when the phrase was first coined. It goes on to discuss the basic concepts of the various systems, including atmospheric and ocean, then closes with a detailed section on land applications. Due to the cross disciplinary nature of the authors' experience and the content covered, this is a must have reference book for all practitioners and students requiring an introduction to the field of remote sensing. - Provides study questions at the end of each chapter to aid learning - Covers all satellite remote sensing technologies, allowing readers to use the text as instructional material - Includes the most recent technologies and their applications, allowing the reader to stay up-to-date - Delves into laser sensing (LIDAR) and commercial satellites (DigitalGlobe) - Presents examples of specific satellite missions, including those in which new technology has been introduced
The Earth is a dynamic planet whose changes and variations affect our communications, energy, health, food, housing, and transportation infrastructure. Understanding these changes requires a range of observations acquired from a variety of land-, sea-, air-, and space-based platforms. To assist NASA, NOAA, and the USGS develop these tools, the NRC was asked by these agencies to carry out a decadal strategy survey of Earth science and applications from space. In particular, the study is to develop the key scientific questions on which to focus Earth and environmental observations in the period 2005-2015, and a prioritized list of space programs, missions, and supporting activities to address these questions. This interim report outlines a key element of the studyâ€"the rationale for tying Earth observations to societal needâ€"and identifies urgent near-term actions needed to achieve this goal. A final report, due in late 2006, will provide the list of recommended space missions, programs, and supporting.
Learn basic Python programming to create functional and effective visualizations from earth observation satellite data sets Thousands of satellite datasets are freely available online, but scientists need the right tools to efficiently analyze data and share results. Python has easy-to-learn syntax and thousands of libraries to perform common Earth science programming tasks. Earth Observation Using Python: A Practical Programming Guide presents an example-driven collection of basic methods, applications, and visualizations to process satellite data sets for Earth science research. Gain Python fluency using real data and case studies Read and write common scientific data formats, like netCDF, HDF, and GRIB2 Create 3-dimensional maps of dust, fire, vegetation indices and more Learn to adjust satellite imagery resolution, apply quality control, and handle big files Develop useful workflows and learn to share code using version control Acquire skills using online interactive code available for all examples in the book The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about this book from this Q&A with the Author
Satellite Soil Moisture Retrieval: Techniques and Applications offers readers a better understanding of the scientific underpinnings, development, and application of soil moisture retrieval techniques and their applications for environmental modeling and management, bringing together a collection of recent developments and rigorous applications of soil moisture retrieval techniques from optical and infrared datasets, such as the universal triangle method, vegetation indices based approaches, empirical models, and microwave techniques, particularly by utilizing earth observation datasets such as IRS III, MODIS, Landsat7, Landsat8, SMOS, AMSR-e, AMSR2 and the upcoming SMAP. Through its coverage of a wide variety of soil moisture retrieval applications, including drought, flood, irrigation scheduling, weather forecasting, climate change, precipitation forecasting, and several others, this is the first book to promote synergistic and multidisciplinary activities among scientists and users working in the hydrometeorological sciences. - Demystifies soil moisture retrieval and prediction - Links soil moisture retrieval techniques with new satellite missions for earth and environmental science oriented problems - Written to be accessible to a wider range of professionals with a common interest in geo-spatial techniques, remote sensing, sustainable water resource development, and earth and environmental issues