Vortex Dynamics Theories and Applications

Vortex Dynamics Theories and Applications

Author: Zambri Harun

Publisher: BoD – Books on Demand

Published: 2020-12-09

Total Pages: 236

ISBN-13: 183962616X

DOWNLOAD EBOOK

The book comprises of different areas in which vortex dynamics is important, its generation, evolution, interactions with other motions, and finally the ways it can be controlled. Vortex characteristics are important in many aspects of our lives, from blood circulation in the arteries to the high-speed jet. Flow control and manipulation of vortices have been used to reduce drag for large tankers resulting in billions of dollars in savings. An effective smoke management system must be put in place for critical areas to ensure the safety of people, for example in a very large shopping complex or a large airport. Advanced computational and cloud-computing facilities have contributed significantly to large-scale simulation projects. Therefore, validations could be performed for larger windows of study so that it can now cover the entire e.g. central business district (CBD) for urban heat island (UHI) study or land-ocean interactions.


Bubble Wake Dynamics in Liquids and Liquid-Solid Suspensions

Bubble Wake Dynamics in Liquids and Liquid-Solid Suspensions

Author: Liang-Shih Fan

Publisher: Butterworth-Heinemann

Published: 2013-10-22

Total Pages: 380

ISBN-13: 1483289508

DOWNLOAD EBOOK

This book is devoted to a fundamental understanding of the fluid dynamic nature of a bubble wake, more specifically the primary wake, in liquids and liquid-solid suspensions, an dto the role it plays in various important flow phenomena of multiphase systems. Examples of these phenomena are liquid/solids mixing, bubble coalescence and disintergration, particle entrainment to the freeboard, and bed contraction.


Dynamics of Droplets

Dynamics of Droplets

Author: Arnold Frohn

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 298

ISBN-13: 3662040409

DOWNLOAD EBOOK

The book deals with the dynamical behaviour of single droplets and regular droplet systems. It has been written mainly for experimental researchers. After a short description of the theoretical background, the different experimental facilities and methods necessary for the investigation of single droplets are described in detail. A summary of important applications is included.


Vortex Dynamics and Optical Vortices

Vortex Dynamics and Optical Vortices

Author: Hector Perez-De-Tejada

Publisher: BoD – Books on Demand

Published: 2017-03-01

Total Pages: 346

ISBN-13: 9535129295

DOWNLOAD EBOOK

The contents of the book cover a wide variety of topics related to the analysis of the dynamics of vortices and describe the results of experiments, computational modeling and their interpretation. The book contains 13 chapters reaching areas of physics in vortex dynamics and optical vortices including vortices in superfluid atomic gases, vortex laser beams, vortex-antivortex in ferromagnetic hybrids, and optical vortices illumination in chiral nanostructures. Also, discussions are presented on particle motion in vortex flows, on the simulation of vortex-dominated flows, on vortices in saturable media, on achromatic vortices, and on ultraviolet vortices. Fractal light vortices, coherent vortex beams, together with vortices in electric dipole radiation, and spin wave dynamics in magnetic vortices are examined as well.


Vortex Structures in Fluid Dynamic Problems

Vortex Structures in Fluid Dynamic Problems

Author: Hector Perez-De-Tejada

Publisher: BoD – Books on Demand

Published: 2017-03-01

Total Pages: 282

ISBN-13: 9535129430

DOWNLOAD EBOOK

The contents of the book cover topics on vortex dynamics in a variety of flow problems and describe observational measurements and their interpretation. The book contains 13 chapters that first include vortices in the earth and planetary sciences related to vortices in the Venus plasma wake and also on tropical cyclones and on rotating shallow water in the earth's atmosphere. Vortices in fluid problems include airplane wake vortices, vorticity evolution in free-shear flows, together with axisymmetric flows with swirl, as well as thermal conductivities in fluid layers. Vortices in relativistic fluids, in magnetic disks, solitons and vortices, and relaxation for point vortices were also examined. Other chapters describe conditions in a vortex bioreactor and in vortex yarn structures.


Vortex Dominated Flows

Vortex Dominated Flows

Author: Lu Ting

Publisher: World Scientific

Published: 2005

Total Pages: 302

ISBN-13: 9812703438

DOWNLOAD EBOOK

Honoring the contributions of one of the field''s leading experts, Lu Ting, this indispensable volume contains important new results at the cutting edge of research. A wide variety of significant new analytical and numerical results in critical areas are presented, including point vortex dynamics, superconductor vortices, cavity flows, vortex breakdown, shock/vortex interaction, wake flows, magneto-hydrodynamics, rotary wake flows, and hypersonic vortex phenomena. The book will be invaluable for those interested in the state of the art of vortex dominated flows, both from a theoretical and applied perspective. Professor Lu Ting and Joe Keller have worked together for over 40 years. In their first joint work entitled OC Periodic vibrations of systems governed by nonlinear partial differential equationsOCO, perturbation analysis and bifurcation theory were used to determine the frequencies and modes of vibration of various physical systems. The novelty was the application to partial differential equations of methods which, previously, had been used almost exclusively on ordinary differential equations. Professsor Lu Ting is an expert in both fluid dynamics and the use of matched asymptotic expansions. His physical insight into fluid flows has led the way to finding the appropriate mathematical simplications used in the solutions to many difficult flow problems."


Vortex Dynamics and Vortex Methods

Vortex Dynamics and Vortex Methods

Author: Christopher Radcliff Anderson

Publisher: American Mathematical Soc.

Published: 1991-12-23

Total Pages: 776

ISBN-13: 9780821896969

DOWNLOAD EBOOK

Understanding vortex dynamics is the key to understanding much of fluid dynamics. For this reason, many researchers, using a great variety of different approaches--analytical, computational, and experimental--have studied the dynamics of vorticity. The AMS-SIAM Summer Seminar on Vortex Dynamics and Vortex Methods, held in June 1990 at the University of Washington in Seattle, brought together experts with a broad range of viewpoints and areas of specialization. This volume contains the proceedings from that seminar. The focus here is on the numerical computation of high Reynolds number incompressible flows. Also included is a smaller selection of important experimental results and analytic treatments. Many of the articles contain valuable introductory and survey material as well as open problems. Readers will appreciate this volume for its coverage of a wide variety of numerical, analytical, and experimental tools and for its treatment of interesting important discoveries made with these tools.


Dynamics of a Liquid Droplet

Dynamics of a Liquid Droplet

Author: Prashant Khare

Publisher: American Chemical Society

Published: 2024-04-09

Total Pages: 130

ISBN-13: 0841299994

DOWNLOAD EBOOK

Multiphase flows and droplet dynamics play a vital role in the industry. Mineral ore (i.e., iron, aluminum, and copper mined in huge quantities yearly) must flow at some stage during extraction. Fluidized beds, bubbly flow in nuclear reactors, inkjet printing, gas-particle flows in chemical reactors, cavitating pumps and turbines, electrophotography used in copy machines, and laser and LED printers are a few examples of process technologies where multiphase flows play a vital role. The importance of multiphase flows concerning air pollution has recently been well recognized. In particular, in propulsion devices, such as automobiles and gas turbine engines in aircraft and power plants, the combustion of liquid fuels, such as diesel, gasoline, and Jet-A, is responsible for creating greenhouse gases and particulates (e.g., unburned carbon particles), which are identified as pollutants. The efficiency of the combustion process and, consequently, the production of the resulting pollutants are dictated by the breakup and vaporization of liquid fuels, making understanding these phenomena critical to developing efficient combustion devices. This ACS In Focus digital primer discusses the current understanding of the breakup and vaporization of single droplets in stagnant and convective environments. Its intended audience is an early career researcher (ranging from a second-year Ph.D. student to a postdoctoral fellow) interested in exploring the fascinating world of liquid droplets. The reader is expected to have had at least an advanced thermodynamics and fluid mechanics undergraduate course.