Space Physics and Aeronomy, Magnetospheres in the Solar System

Space Physics and Aeronomy, Magnetospheres in the Solar System

Author: Romain Maggiolo

Publisher: John Wiley & Sons

Published: 2021-05-04

Total Pages: 61

ISBN-13: 1119507529

DOWNLOAD EBOOK

An overview of current knowledge and future research directions in magnetospheric physics In the six decades since the term 'magnetosphere' was first introduced, much has been theorized and discovered about the magnetized space surrounding each of the bodies in our solar system. Each magnetosphere is unique yet behaves according to universal physical processes. Magnetospheres in the Solar System brings together contributions from experimentalists, theoreticians, and numerical modelers to present an overview of diverse magnetospheres, from the mini-magnetospheres of Mercury to the giant planetary magnetospheres of Jupiter and Saturn. Volume highlights include: Concise history of magnetospheres, basic principles, and equations Overview of the fundamental processes that govern magnetospheric physics Tools and techniques used to investigate magnetospheric processes Special focus on Earth’s magnetosphere and its dynamics Coverage of planetary magnetic fields and magnetospheres throughout the solar system Identification of future research directions in magnetospheric physics The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about the Space Physics and Aeronomy collection in this Q&A with the Editors in Chief


Dayside Magnetosphere Interactions

Dayside Magnetosphere Interactions

Author: Qiugang Zong

Publisher: John Wiley & Sons

Published: 2020-03-13

Total Pages: 324

ISBN-13: 1119509629

DOWNLOAD EBOOK

Exploring the processes and phenomena of Earth's dayside magnetosphere Energy and momentum transfer, initially taking place at the dayside magnetopause, is responsible for a variety of phenomenon that we can measure on the ground. Data obtained from observations of Earth’s dayside magnetosphere increases our knowledge of the processes by which solar wind mass, momentum, and energy enter the magnetosphere. Dayside Magnetosphere Interactions outlines the physics and processes of dayside magnetospheric phenomena, the role of solar wind in generating ultra-low frequency waves, and solar wind-magnetosphere-ionosphere coupling. Volume highlights include: Phenomena across different temporal and spatial scales Discussions on dayside aurora, plume dynamics, and related dayside reconnection Results from spacecraft observations, ground-based observations, and simulations Discoveries from the Magnetospheric Multiscale Mission and Van Allen Probes era Exploration of foreshock, bow shock, magnetosheath, magnetopause, and cusps Examination of similar processes occurring around other planets The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about this book from this Q&A with the editors


Dynamics of the Magnetosphere

Dynamics of the Magnetosphere

Author: Syun-Ichi Akasofu

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 650

ISBN-13: 9400995199

DOWNLOAD EBOOK

The Los Alamos Chapman Conference on Magnetospheric Substorms and Related Plasma Processes can be considered the fourth in a series devoted to magnetospheric substorms, after the Moscow (1971), Houston (1972), and Bryce Mountain (1974) meetings. The main motivation for organizing the Los Alamos Conference was that magnetospheric substorm studies have advanced enough to the point of bringing experimenters, analysts and theorists together to discuss major substorm problems with special emphasis on theoretical interpretations in terms of plasma processes. In spite of an extremely heavy schedule from 8:30 A.M. to 10:00 P.M., every session was conducted in an enjoyable and spirited atmosphere. In fact, during one of the afternoons that we had put aside for relaxation, John Winckler led a group of the attendees in a climb to the ceremonial cave of a prehistoric Indian ruin at Bandelier National Monument, near Los Alamos under a crystal blue sky and a bright New Mexico sun. There, they danced as the former dwellers of the pueblo had, perhaps as an impromptu evocation of a magnetospheric event.


Dynamics of the Earth's Radiation Belts and Inner Magnetosphere

Dynamics of the Earth's Radiation Belts and Inner Magnetosphere

Author: Danny Summers

Publisher: John Wiley & Sons

Published: 2013-05-09

Total Pages: 782

ISBN-13: 1118704371

DOWNLOAD EBOOK

Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 199. Dynamics of the Earth's Radiation Belts and Inner Magnetosphere draws together current knowledge of the radiation belts prior to the launch of Radiation Belt Storm Probes (RPSP) and other imminent space missions, making this volume timely and unique. The volume will serve as a useful benchmark at this exciting and pivotal period in radiation belt research in advance of the new discoveries that the RPSP mission will surely bring. Highlights include the following: a review of the current state of the art of radiation belt science; a complete and up-to-date account of the wave-particle interactions that control the dynamical acceleration and loss processes of particles in the Earth's radiation belts and inner magnetosphere; a discussion emphasizing the importance of the cross-energy coupling of the particle populations of the radiation belts, ring current, and plasmasphere in controlling the dynamics of the inner magnetosphere; an outline of the design and operation of future satellite missions whose objectives are to discover the dominant physical processes that control the dynamics of the Earth's radiation belts and to advance our level of understanding of radiation belt dynamics ideally to the point of predictability; and an examination of the current state of knowledge of Earth's radiation belts from past and current spacecraft missions to the inner magnetosphere. Dynamics of the Earth's Radiation Belts and Inner Magnetosphere will be a useful reference work for the specialist researcher, the student, and the general reader. In addition, the volume could be used as a supplementary text in any graduate-level course in space physics in which radiation belt physics is featured.


Earth's Magnetosphere

Earth's Magnetosphere

Author: Wayne Keith

Publisher: Academic Press

Published: 2020-11-24

Total Pages: 644

ISBN-13: 0128181613

DOWNLOAD EBOOK

Earth's Magnetosphere: Formed by the Low Latitude Boundary Layer, Second Edition, provides a fully updated overview of both historical and current data related to the magnetosphere and how it is formed. With a focus on experimental data and space missions, the book goes in depth relating space physics to the Earth's magnetosphere and its interaction with the solar wind. Starting with Newton's law, this book also examines Maxwell's equations and subsidiary equations such as continuity, constitutive relations and the Lorentz transformation, Helmholtz' theorem, and Poynting's theorem, among other methods for understanding this interaction.This new edition of Earth's Magnetosphere is updated with information on such topics as 3D reconnection, space weather implications, recent missions such as MMS, ionosphere outflow and coupling, and the inner magnetosphere. With the addition of end-of-chapter problems as well, this book is an excellent foundational reference for geophysicists, space physicists, plasma physicists, and graduate students alike. - Offers an historical perspective of early magnetospheric research, combined with progress up to the present - Describes observations from various spacecraft in a variety of regions, with explanations and discussions of each - Includes chapters on prompt particle acceleration to high energies, plasma transfer event, and the low latitude boundary layer


Physics of the Jovian Magnetosphere

Physics of the Jovian Magnetosphere

Author: A. J. Dessler

Publisher: Cambridge University Press

Published: 1983

Total Pages: 572

ISBN-13: 9780521520065

DOWNLOAD EBOOK

A valuable reference work for those doing research in magnetospheric physics and related disciplines.


Magnetosphere-Ionosphere Coupling

Magnetosphere-Ionosphere Coupling

Author: Y. Kamide

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 279

ISBN-13: 3642500625

DOWNLOAD EBOOK

In the past two decades a succession of direct observations by satellites, and of extensive computer simulations, has led to the realization that the polar ionosphere plays a principal role in large-scale magnetospheric processes - a manifestation of the physics linkage involved in solar-terrestrial interactions. Spatial/temporal variations in high-latitude electromagnetic phenomena, such as dynamic aurorae, electric fields and currents, have proved to be extremely complex. Now the challenge is to comprehend the vast amount of complicated measurements made in this magnetosphere-ionosphere sysstem of the Earth. This book addresses the electrical coupling between the hot, but dilute, magnetospheric plasma and the cold, but dense, plasma in the ionosphere. In five major chapters, this book presents: - basic properties of magnetosphere-ionosphere coupling; - morphology of electric fields and currents at high latitudes; - global modeling of magnetosphere-ionosphere coupling; - modeling of ionospheric electrodynamics; - current issues, such as auroral particle acceleration, substorms, penetration of high-latitude fields into low latitudes.


Quantitative Aspects of Magnetospheric Physics

Quantitative Aspects of Magnetospheric Physics

Author: Larry R. Lyons

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 245

ISBN-13: 9401728194

DOWNLOAD EBOOK

The discovery of the earth's radiation belts in 1957 marked the beginning of what is now known as magnetospheric physics. The field has evolved normally from an early discovery phase through a period of exploration and into an era of quantitative studies of the dynamics of magnetized plasmas as they occur in nature. Such environments are common throughout the universe and have been studied in varying detail at the sun, the planets, pulsars, and certain radio galaxies. The purpose of this book is to describe basic quantitative aspects of magnetospheric physics. We use selected examples from the earth's magnetosphere to show how theory and data together form a quantitative framework for magnetospheric research. We have tried to organize the material along the philosophy of starting simply and adding com plexity only as necessary. We have avoided controversial and relatively new research topics and have tried to use as examples physical processes generally accepted as important within the earth's magnetospheric system. However, even in some of our examples, the question of whether the physical process applied to a particular problem is the dominant process, has yet to be answered.


The Dynamic Loss of Earth's Radiation Belts

The Dynamic Loss of Earth's Radiation Belts

Author: Allison Jaynes

Publisher: Elsevier

Published: 2019-09-05

Total Pages: 346

ISBN-13: 0128133996

DOWNLOAD EBOOK

The Dynamic Loss of Earth's Radiation Belts: From Loss in the Magnetosphere to Particle Precipitation in the Atmosphere presents a timely review of data from various explorative missions, including the Van Allen Probes, the Magnetospheric Multiscale Mission (which aims to determine magnetopause losses), the completion of four BARREL balloon campaigns, and several CubeSat missions focusing on precipitation losses. This is the first book in the area to include a focus on loss, and not just acceleration and radial transport. Bringing together two communities, the book includes contributions from experts with knowledge in both precipitation mechanisms and the effects on the atmosphere. There is a direct link between what gets lost in the magnetospheric radiation environment and the energy deposited in the layers of our atmosphere. Very recently, NASA's Living With a Star program identified a new, targeted research topic that addresses this question, highlighting the timeliness of this precise science. The Dynamic Loss of Earth's Radiation Belts brings together scientists from the space and atmospheric science communities to examine both the causes and effects of particle loss in the magnetosphere. - Examines both the causes and effects of particle loss in the magnetosphere from multiple perspectives - Presents interdisciplinary content that bridges the gap, through communication and collaboration, between the magnetospheric and atmospheric communities - Fills a gap in the literature by focusing on loss in the radiation belt, which is especially timely based on data from the Van Allen Probes, the Magnetospheric Multiscale Mission, and other projects - Includes contributions from various experts in the field that is organized and collated by a clear-and-consistent editorial team


Magnetospheric Current Systems

Magnetospheric Current Systems

Author: Shin-ichi Ohtani

Publisher: American Geophysical Union

Published: 2000-01-10

Total Pages: 398

ISBN-13: 0875909760

DOWNLOAD EBOOK

Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 118. The magnetosphere is an open system that interacts with the solar wind. In this system, solar wind energy continuously permeates different regions of the magnetosphere through electromagnetic processes, which we can well describe in terms of current systems. In fact, our ability to use various methods to study magnetospheric current systems has recently prompted significant progress in our understanding of the phenomenon. Unprecedented coverage of satellite and ground?]based observations has advanced global approaches to magnetospheric current systems, whereas advanced measurements of electromagnetic fields and particles have brought new insights about micro?]processes. Increased computer capabilities have enabled us to simulate the dynamics not only of the terrestrial magnetosphere but also the magnetospheres of other planets. Based on such developments, the present volume revisits outstanding issues about magnetospheric current systems.