Collection of 23 original papers on the population dynamics of large mammals, including ones on fur seals, harp seals, bears, whales, etc. The chapters facilitate comparison of the population dynamics of various groups including herbivores, carnivores, ungulates, cetaceans and pinnipeds.
An ideal refresher guide packed with useful references, this thorough survey covers all fundamental topics and principles of wildlife management and includes pertinent discussions on top issues affecting the field today. Discusses such basic components as the history and evolution of wildlife management, conservation ideas, population dynamics, decimation and welfare factors, census terminology, the goals of management to employment opportunities in the field, current and future issues, and much more. Suggests numerous outside reference sources for additional enrichment on an array of rudimentary and contemporary issues. For professionals in the fields of agriculture, wildlife management, and conservation biology.
In 1984, a conference called Wildlife 2000: Modeling habitat relationships of terrestrial vertebrates, was held at Stanford Sierra Camp at Fallen Leaf Lake in the Sierra Nevada Mountains of California. The conference was well-received, and the published volume (Verner, J. , M. L. Morrison, and C. J. Ralph, editors. 1986. Wildlife 2000: modeling habitat relationships of terrestrial vertebrates, University of Wisconsin Press, Madison, Wisconsin, USA) proved to be a landmark publication that received a book award by The Wildlife Society. Wildlife 2001: populations was a followup conference with emphasis on the other major biological field of wildlife conservation and management, populations. It was held on July 29-31, 1991, at the Oakland Airport Hilton Hotel in Oakland, California, in accordance with our intent that this conference have a much stronger international representation than did Wildlife 2000. The goal of the conference was to bring together an international group of specialists to address the state of the art in wildlife population dynamics, and set the agenda for future research and management on the threshold of the 21st century. The mix of specialists included workers in theoretical, as well as practical, aspects of wildlife conservation and management. Three general sessions covered methods, modelling, and conservation of threatened species.
Most large herbivores require some type of management within their habitats. Some populations of large herbivores are at the brink of extinction, some are under discussion for reintroduction, whilst others already occur in dense populations causing conflicts with other land use. Large herbivores are the major drivers for forming the shape and function of terrestrial ecosystems. This 2006 book addresses the scientifically based action plans to manage both the large herbivore populations and their habitats worldwide. It covers the processes by which large herbivores not only affect their environment (e.g. grazing) but are affected by it (e.g. nutrient cycling) and the management strategies required. Also discussed are new modeling techniques, which help assess integration processes in a landscape context, as well as assessing the consequences of new developments in the processes of conservation. This book will be essential reading for all involved in the management of both large herbivores and natural resources.
This book aims to reconcile theoretical models of population dynamics with what is currently known about the population dynamics of large mammalian herbivores. It arose from a working group established at the National Center for Ecological Analysis and Synthesis at the University of California, Santa Barbara, to address the need for models that better accommodate environmental variability, especially for herbivores dependent on changing vegetation resources. The initial chapter reviews findings from definitive long-term studies of certain other ungulate populations, many based on individually identifiable animals. Other chapters cover climatic influences, emphasising temperate versus tropical contrasts, and demographic processes underlying population dynamics, more generally. There are new assessments of irruptive population dynamics, and of the consequences of landscape heterogeneity for herbivore populations. An initial review of candidate population models is followed up by a final chapter outlining how these models might be modified to better accommodate environmental variability. The contents provide a foundation for resolving problems of diminishing large mammal populations in Africa, over-abundant ungulate populations elsewhere, and general consequences of global change for biodiversity conservation. This book will serve as a definitive outline of what is currently known about the population dynamics of large herbivores.
Dr. Timothy Schowalter has succeeded in creating a unique, updated treatment of insect ecology. This revised and expanded text looks at how insects adapt to environmental conditions while maintaining the ability to substantially alter their environment. It covers a range of topics- from individual insects that respond to local changes in the environment and affect resource distribution, to entire insect communities that have the capacity to modify ecosystem conditions.Insect Ecology, Second Edition, synthesizes the latest research in the field and has been produced in full color throughout. It is ideal for students in both entomology and ecology-focused programs.NEW TO THIS EDITION:* New topics such as elemental defense by plants, chaotic models, molecular methods to measure disperson, food web relationships, and more* Expanded sections on plant defenses, insect learning, evolutionary tradeoffs, conservation biology and more* Includes more than 350 new references* More than 40 new full-color figures
Spatial Capture-Recapture provides a comprehensive how-to manual with detailed examples of spatial capture-recapture models based on current technology and knowledge. Spatial Capture-Recapture provides you with an extensive step-by-step analysis of many data sets using different software implementations. The authors' approach is practical – it embraces Bayesian and classical inference strategies to give the reader different options to get the job done. In addition, Spatial Capture-Recapture provides data sets, sample code and computing scripts in an R package. - Comprehensive reference on revolutionary new methods in ecology makes this the first and only book on the topic - Every methodological element has a detailed worked example with a code template, allowing you to learn by example - Includes an R package that contains all computer code and data sets on companion website
Large ungulates in tropical forests are among the most threatened taxa of mammals. Excessive hunting, degradation of and encroachments on their natural habitats by humans have contributed to drastic reductions in wild ungulate populations in recent decades. As such, reliable assessments of ungulate-habitat relationships and the spatial dynamics of their populations are urgently needed to provide a scientific basis for conservation efforts. However, such rigorous assessments are methodologically complex and logistically difficult, and consequently many commonly used ungulate population survey methods do not address key problems. As a result of such deficiencies, key parameters related to population distribution, abundance, habitat ecology and management of tropical forest ungulates remain poorly understood. This book addresses this critical knowledge gap by examining how population abundance patterns in five threatened species of large ungulates vary across space in the tropical forests of the Nagarahole-Bandipur reserves in southwestern India. It also explains the development and application of an innovative methodology – spatially explicit line transect sampling – based on an advanced hierarchical modelling under the Bayesian inferential framework, which overcomes common methodological deficiencies in current ungulate surveys. The methods and results presented provide valuable reference material for researchers and professionals involved in studying and managing wild ungulate populations around the globe.