Dynamics of Detonations and Explosions
Author:
Publisher: AIAA
Published: 1991
Total Pages: 422
ISBN-13: 9781600863875
DOWNLOAD EBOOKRead and Download eBook Full
Author:
Publisher: AIAA
Published: 1991
Total Pages: 422
ISBN-13: 9781600863875
DOWNLOAD EBOOKAuthor: Russell A. Ogle
Publisher: Butterworth-Heinemann
Published: 2016-09-10
Total Pages: 687
ISBN-13: 0128038292
DOWNLOAD EBOOKDust Explosion Dynamics focuses on the combustion science that governs the behavior of the three primary hazards of combustible dust: dust explosions, flash fires, and smoldering. It explores the use of fundamental principles to evaluate the magnitude of combustible dust hazards in a variety of settings. Models are developed to describe dust combustion phenomena using the principles of thermodynamics, transport phenomena, and chemical kinetics. Simple, tractable models are described first and compared with experimental data, followed by more sophisticated models to help with future challenges. Dr. Ogle introduces the reader to just enough combustion science so that they may read, interpret, and use the scientific literature published on combustible dusts. This introductory text is intended to be a practical guide to the application of combustible dust models, suitable for both students and experienced engineers. It will help you to describe the dynamics of explosions and fires involving dust and evaluate their consequences which in turn will help you prevent damage to property, injury and loss of life from combustible dust accidents. - Demonstrates how the fundamental principles of combustion science can be applied to understand the ignition, propagation, and extinction of dust explosions - Explores fundamental concepts through model-building and comparisons with empirical data - Provides detailed examples to give a thorough insight into the hazards of combustible dust as well as an introduction to relevant scientific literature
Author: K. Ramamurthi
Publisher: Springer Nature
Published: 2021-06-19
Total Pages: 408
ISBN-13: 3030743381
DOWNLOAD EBOOKb="" The book provides a concise description of the physical processes and mathematical models for explosions and formation of blast waves from explosions. The contents focus on quantitatively determining the energy released in the different types of explosions and the destructive blast waves that are generated. The contribution of flames, detonations and other physical processes to the explosion phenomenon is dealt with in detail. Gaseous and condensed phase explosions are discussed and the yield of explosions with their TNT equivalence is determined. Time scales involved in the explosion process and the scaling procedure are ascertained. Explosions over the ground, in water, and the interaction of explosions with objects are examined. In order to keep the text easily readable, the detailed derivation of the mathematical equations is given in the seven appendices at the end of the book. Case studies of various explosions are investigated and simple problems and their solutions are provided for the different topics to assist the reader in internalizing the explosion process. The book is a useful reference for professionals and academics in aeronautics, mechanical, civil and chemical engineering and for personnel working in explosive manufacture and high-energy materials, armaments, space, defense, and industrial and fire safety.
Author: Josef Henrych
Publisher: Elsevier Science & Technology
Published: 1979
Total Pages: 572
ISBN-13:
DOWNLOAD EBOOKAuthor: Valery K. Kedrinskiy
Publisher: Springer Science & Business Media
Published: 2005-11-04
Total Pages: 372
ISBN-13: 3540285636
DOWNLOAD EBOOKHydronamics of Explosion presents the research results for the problems of underwater explosions and contains a detailed analysis of the structure and the parameters of the wave fields generated by explosions of cord and spiral charges, a description of the formation mechanisms for a wide range of cumulative flows at underwater explosions near the free surface, and the relevant mathematical models. Shock-wave transformation in bubbly liquids, shock-wave amplification due to collision and focusing, and the formation of bubble detonation waves in reactive bubbly liquids are studied in detail. Particular emphasis is placed on the investigation of wave processes in cavitating liquids, which incorporates the concepts of the strength of real liquids containing natural microinhomogeneities, the relaxation of tensile stress, and the cavitation fracture of a liquid as the inversion of its two-phase state under impulsive (explosive) loading. The problems are classed among essentially nonlinear processes that occur under shock loading of liquids and may be of interest to researchers in physical acoustics, mechanics of multiphase media, shock-wave processes in condensed media, explosive hydroacoustics, and cumulation.
Author: J. Raymond Bowen
Publisher:
Published: 1984
Total Pages: 632
ISBN-13:
DOWNLOAD EBOOKAuthor: John H. S. Lee
Publisher: Cambridge University Press
Published: 2016-07-21
Total Pages: 217
ISBN-13: 1316592081
DOWNLOAD EBOOKExplosions, and the non-steady shock propagation associated with them, continue to interest researchers working in different fields of physics and engineering (such as astrophysics and fusion). Based on the author's course in shock dynamics, this book describes the various analytical methods developed to determine non-steady shock propagation. These methods offer a simple alternative to the direct numerical integration of the Euler equations and offer a better insight into the physics of the problem. Professor Lee presents the subject systematically and in a style that is accessible to graduate students and researchers working in shock dynamics, combustion, high-speed aerodynamics, propulsion and related topics.
Author: Adrian P. Mouritz
Publisher: Woodhead Publishing
Published: 2017-05-22
Total Pages: 434
ISBN-13: 0081020937
DOWNLOAD EBOOKExplosion Blast Response of Composites contains key information on the effects of explosions, shock waves, and detonation products (e.g. fragments, shrapnel) on the deformation and damage to composites. The book considers the blast response of laminates and sandwich composites, along with blast mitigation of composites (including coating systems and energy absorbing materials). Broken down under the following key themes: Introduction to explosive blast response of composites, Air explosion blast response of composites, Underwater explosion blast response of composites, and High strain rate and dynamic properties of composites, the book deals with an important and contemporary topic due to the extensive use of composites in applications where explosive blasts are an ever-present threat, such as military aircraft, armoured vehicles, naval ships and submarines, body armour, and other defense applications. In addition, the growing use of IEDs and other types of bombs used by terrorists to attack civilian and military targets highlights the need for this book. Many terrorist attacks occur in subways, trains, buses, aircraft, buildings, and other civil infrastructure made of composite materials. Designers, engineers and terrorist experts need the essential information to protect civilians, military personnel, and assets from explosive blasts. - Focuses on key aspects, including both modeling, analysis, and experimental work - Written by leading international experts from academia, defense agencies, and other organizations - Timely book due to the extensive use of composites in areas where explosive blasts are an ever-present threat in military applications
Author: A. L. Kuhl
Publisher: AIAA (American Institute of Aeronautics & Astronautics)
Published: 1991
Total Pages: 456
ISBN-13:
DOWNLOAD EBOOKThe four companion volumes on Dynamics of Deflagrations and Reactive Systems and Dynamics of Detonations and Explosions present 91 of the149 papers given at the Twelfth International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS) held at the University of Michigan in Ann Arbor during July 1989. Four volumes: Dynamics of Deflagrations and Reactive Systems: Flames (Volume 131) and Dynamics of Deflagrations and Reactive Systems: Heterogeneous Combustion (Volume 132) span a broad area, encompassing the processes of coupling the exothermic energy release with the fluid dynamics occurring in any combustion process. Dynamics of Detonations and Explosions: Detonations (Volume 133) and Dynamics of Detonations and Explosions: Explosion Phenomena (Volume 134) principally address the rate processes of energy deposition in a compressible medium and the concurrent nonsteady flow as it typically occurs in explosion phenomena. In this volume, Dynamics of Detonations and Explosions: Detonations, the papers have been arranged into chapters on gaseous detonations, detonation initiation and transmission, nonideal detonations and boundary effects, and multiphase detonations. Although the brevity of this preface does not permit the editors to do justice to all papers, we offer the following highlights of some of the especially noteworthy contributions.
Author: Michael A. Liberman
Publisher: Springer Science & Business Media
Published: 2010-03-14
Total Pages: 368
ISBN-13: 3540787593
DOWNLOAD EBOOKMost of the material covered in this book deals with the fundamentals of chemistry and physics of key processes and fundamental mechanisms for various combustion and combustion related phenomena in gaseous combustible mixture. It provides the reader with basic knowledge of burning processes and mechanisms of reaction wave propagation. The combustion of a gas mixture (flame, explosion, detonation) is necessarily accompanied by motion of the gas. The process of combustion is therefore not only a chemical phenomenon but also one of gas dynamics. The material selection focuses on the gas phase and with premixed gas combustion. Premixed gas combustion is of practical importance in engines, modern gas turbine and explosions, where the fuel and air are essentially premixed, and combustion occurs by the propagation of a front separating unburned mixture from fully burned mixture. Since premixed combustion is the most fundamental and potential for practical applications, the emphasis in the present work is be placed on regimes of premixed combustion. This text is intended for graduate students of different specialties, including physics, chemistry, mechanical engineering, computer science, mathematics and astrophysics.