Dynamics and Fault Diagnosis of Nonlinear Rotors and Impellers

Dynamics and Fault Diagnosis of Nonlinear Rotors and Impellers

Author: Jiazhong Zhang

Publisher: Springer Nature

Published: 2022-04-28

Total Pages: 281

ISBN-13: 3030943011

DOWNLOAD EBOOK

This contributed volume presents recent developments in nonlinear dynamics applied to engineering. Specifically, the authors address stability and bifurcation in large-scale, complex rotor dynamic systems; periodic motions and their bifurcations in nonlinear circuit systems, fault diagnosis of complex engineering systems with nonlinear approaches, singularities in fluid-machinery and bifurcation analysis, nonlinear behaviors in rotor dynamic system with multi-mistuned blades, mode localization induced by mistuning in impellers with periodical and cyclic symmetry, and nonlinear behaviors in fluid-structure interaction and their control. These new results will maximize reader understand on the recent progress in nonlinear dynamics applied to large-scale, engineering systems in general and nonlinear rotors and impellers in particular.


Linear and Nonlinear Rotordynamics

Linear and Nonlinear Rotordynamics

Author: Yukio Ishida

Publisher: John Wiley & Sons

Published: 2013-03-05

Total Pages: 495

ISBN-13: 3527651918

DOWNLOAD EBOOK

A wide-ranging treatment of fundamental rotordynamics in order to serve engineers with the necessary knowledge to eliminate various vibration problems. New to this edition are three chapters on highly significant topics: Vibration Suppression - The chapter presents various methods and is a helpful guidance for professional engineers. Magnetic Bearings - The chapter provides fundamental knowledge and enables the reader to realize simple magnetic bearings in the laboratory. Some Practical Rotor Systems - The chapter explains various vibration characteristics of steam turbines and wind turbines. The contents of other chapters on Balancing, Vibrations due to Mechanical Elements, and Cracked Rotors are added to and revised extensively. The authors provide a classification of rotating shaft systems and general coverage of key ideas common to all branches of rotordynamics. They offers a unique analysis of dynamical problems, such as nonlinear rotordynamics, self-excited vibration, nonstationary vibration, and flow-induced oscillations. Nonlinear resonances are discussed in detail, as well as methods for shaft stability and various theoretical derivations and computational methods for analyzing rotors to determine and correct vibrations. This edition also includes case studies and problems.


A History of Mechanical Engineering

A History of Mechanical Engineering

Author: Ce Zhang

Publisher: Springer Nature

Published: 2020-01-03

Total Pages: 563

ISBN-13: 981150833X

DOWNLOAD EBOOK

This book explores the history of mechanical engineering since the Bronze Age. Focusing on machinery inventions and the development of mechanical technology, it also discusses the machinery industry and modern mechanical education. The evolution of machinery is divided into three stages: Ancient (before the European Renaissance), Modern (mainly including the two Industrial Revolutions) and Contemporary (since the Revolution in Physics, especially post Second World War). The book not only clarifies the development of mechanical engineering, but also reveals the driving forces behind it – e.g. the economy, national defense and human scientific research activities – to highlight the links between technology and society; mechanical engineering and the natural sciences; and mechanical engineering and related technological areas. Though mainly intended as a textbook or supplemental reading for graduate students, the book also offers a unique resource for researchers and engineers in mechanical engineering who wish to broaden their horizons.


Fault Detection and Model-based Diagnostics in Nonlinear Dynamic Systems

Fault Detection and Model-based Diagnostics in Nonlinear Dynamic Systems

Author: Mohsen Nakhaeinejad

Publisher:

Published: 2010

Total Pages: 282

ISBN-13:

DOWNLOAD EBOOK

Modeling, fault assessment, and diagnostics of rolling element bearings and induction motors were studied. Dynamic model of rolling element bearings with faults were developed using vector bond graphs. The model incorporates gyroscopic and centrifugal effects, contact deflections and forces, contact slip and separations, and localized faults. Dents and pits on inner race, outer race and balls were modeled through surface profile changes. Experiments with healthy and faulty bearings validated the model. Bearing load zones under various radial loads and clearances were simulated. The model was used to study dynamics of faulty bearings. Effects of type, size and shape of faults on the vibration response and on dynamics of contacts in presence of localized faults were studied. A signal processing algorithm, called feature plot, based on variable window averaging and time feature extraction was proposed for diagnostics of rolling element bearings. Conducting experiments, faults such as dents, pits, and rough surfaces on inner race, balls, and outer race were detected and isolated using the feature plot technique. Time features such as shape factor, skewness, Kurtosis, peak value, crest factor, impulse factor and mean absolute deviation were used in feature plots. Performance of feature plots in bearing fault detection when finite numbers of samples are available was shown. Results suggest that the feature plot technique can detect and isolate localized faults and rough surface defects in rolling element bearings. The proposed diagnostic algorithm has the potential for other applications such as gearbox. A model-based diagnostic framework consisting of modeling, non-linear observability analysis, and parameter tuning was developed for three-phase induction motors. A bond graph model was developed and verified with experiments. Nonlinear observability based on Lie derivatives identified the most observable configuration of sensors and parameters. Continuous-discrete Extended Kalman Filter (EKF) technique was used for parameter tuning to detect stator and rotor faults, bearing friction, and mechanical loads from currents and speed signals. A dynamic process noise technique based on the validation index was implemented for EKF. Complex step Jacobian technique improved computational performance of EKF and observability analysis. Results suggest that motor faults, bearing rotational friction, and mechanical load of induction motors can be detected using model-based diagnostics as long as the configuration of sensors and parameters is observable.


Fault Detection and Diagnosis in Nonlinear Systems

Fault Detection and Diagnosis in Nonlinear Systems

Author: Rafael Martinez-Guerra

Publisher: Springer

Published: 2016-08-23

Total Pages: 0

ISBN-13: 9783319379661

DOWNLOAD EBOOK

The high reliability required in industrial processes has created the necessity of detecting abnormal conditions, called faults, while processes are operating. The term fault generically refers to any type of process degradation, or degradation in equipment performance because of changes in the process's physical characteristics, process inputs or environmental conditions. This book is about the fundamentals of fault detection and diagnosis in a variety of nonlinear systems which are represented by ordinary differential equations. The fault detection problem is approached from a differential algebraic viewpoint, using residual generators based upon high-gain nonlinear auxiliary systems (‘observers’). A prominent role is played by the type of mathematical tools that will be used, requiring knowledge of differential algebra and differential equations. Specific theorems tailored to the needs of the problem-solving procedures are developed and proved. Applications to real-world problems, both with constant and time-varying faults, are made throughout the book and include electromechanical positioning systems, the Continuous Stirred Tank Reactor (CSTR), bioreactor models and belt drive systems, to name but a few.


Proceedings of the 10th International Conference on Rotor Dynamics – IFToMM

Proceedings of the 10th International Conference on Rotor Dynamics – IFToMM

Author: Katia Lucchesi Cavalca

Publisher: Springer

Published: 2018-08-18

Total Pages: 586

ISBN-13: 3319992686

DOWNLOAD EBOOK

IFToMM conferences have a history of success due to the various advances achieved in the field of rotor dynamics over the past three decades. These meetings have since become a leading global event, bringing together specialists from industry and academia to promote the exchange of knowledge, ideas, and information on the latest developments in the dynamics of rotating machinery. The scope of the conference is broad, including e.g. active components and vibration control, balancing, bearings, condition monitoring, dynamic analysis and stability, wind turbines and generators, electromechanical interactions in rotor dynamics and turbochargers. The proceedings are divided into four volumes. This second volume covers the following main topics: condition monitoring, fault diagnostics and prognostics; modal testing and identification; parametric and self-excitation in rotor dynamics; uncertainties, reliability and life predictions of rotating machinery; and torsional vibrations and geared systems dynamics.


On the Characteristics of Fault-induced Rotor-dynamic Bifurcations and Nonlinear Responses

On the Characteristics of Fault-induced Rotor-dynamic Bifurcations and Nonlinear Responses

Author: Baozhong Yang

Publisher:

Published: 2003

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Rotor-dynamic stability is a very important subject impacting the design, control, maintenance, and operating safety and reliability of rotary mechanical systems. As rotor-dynamic nonlinearities are significantly more prominent at higher rotary speeds, the demand for better and improved performance achievable through higher speeds has rendered the use of a linear approach for rotor-dynamic analysis both inadequate and ineffective. To establish the fundamental knowledge base necessary for addressing the need, it is essential that nonlinear rotor-dynamic responses indicative of the causes of nonlinearity, along with the bifurcated dynamic states of instability, be fully characterized. The objectives of the research are to study the various rotor-dynamic instabilities induced by crack breathing and bearing fluid film forces using a model rotor-bearing system and to investigate the applicability of the fundamental concept of instantaneous frequency for characterizing rotor-dynamic nonlinear responses. A comprehensive finite element model incorporating translational and rotational inertia, bending stiffness and gyroscopic moment is developed. The intrinsic modes extracted using the Empirical Mode Decomposition along with their instantaneous frequencies resolved using the Hilbert transform are applied to characterize the inception and progression of bifurcations suggestive of the changing rotor-dynamic state and impending instability. The dissertation presents and demonstrates an effective approach that integrates nonlinear rotor-dynamics, instantaneous time-frequency analysis, advanced notions of dynamic system diagnostics and numerical modeling applied to the detection and identification of sensitive variations indicative of a bifurcated dynamic state. All presented studies on rotor response subjected to various system configurations and ranges of parameters show good agreements with published results. Under the influence of crack opening, the rotor-bearing model system displays transitional behaviors typical of a nonlinear dynamic system, going from periodic to period-doubling, chaotic to eventual failure. When film forces are also considered, the model system demonstrates very different behaviors and failures from different settings and ranges of control parameters. As a result, a dynamic failure curve differentiating zones of stability and bifurcated instability from zones of dynamic failure is constructed and proposed as an alternative to the traditional stability chart. Observations and results such as these have important practical implications on the design and safe operation of high performance rotary machinery.


Advances in Rotor Dynamics, Control, and Structural Health Monitoring

Advances in Rotor Dynamics, Control, and Structural Health Monitoring

Author: Subashisa Dutta

Publisher: Springer Nature

Published: 2020-08-29

Total Pages: 625

ISBN-13: 9811556938

DOWNLOAD EBOOK

This book consists of selected and peer-reviewed papers presented at the 13th International Conference on Vibration Problems (ICOVP 2017). The topics covered in this book are broadly related to the fields of structural health monitoring, vibration control and rotor dynamics. In the structural health monitoring section studies on nonlinear dynamic analysis, damage identification, viscoelastic model of concrete, and seismic damage assessment are thoroughly discussed with analytical and numerical techniques. The vibration control part includes topics such as multi-storeyed stacked tuned mass dampers, vibration isolation with elastomeric mounts, and nonlinear active vibration absorber. This book will be useful for beginners, researchers and professionals interested in the field of vibration control, structural health monitoring and rotor dynamics.


Transient Dynamic Finite Element Modelling of Flexible Rotor Systems with Nonlinear Fluid Film Bearings and Faults

Transient Dynamic Finite Element Modelling of Flexible Rotor Systems with Nonlinear Fluid Film Bearings and Faults

Author: Amand Krüger

Publisher:

Published: 2014

Total Pages: 214

ISBN-13:

DOWNLOAD EBOOK

This dissertation forms part of a research project assigned to the University of Pretoria by Eskom (the primary electricity utility in South Africa). The project aims to address, amongst others, the limitations imposed by shaft runout on the usable frequency range of diagnostic data measured by eddy current proximity probes on turbogenerator shafts. This research includes an experimental investigation into the effects of artificially induced faults on a laboratory-scale rotor system, the development and analysis of a mathematical (numerical) model of this rotor system and the development of data processing techniques (including artificial intelligence) to determine the rotor’s condition, faults and diagnostic signal parameters from both the experimental and numerical results. Furthermore, a methodology is to be developed to perform runout compensation in an unsupervised manner. These techniques are then to be implemented for proximity probe vibration data measured on turbogenerators. As part of the research project, this dissertation specifically focuses on the development and rotor dynamic analysis of numerical (finite element) models of the experimental (laboratory-scale) rotor system (using finite element software MSC.Nastran), including gyroscopic effects, a nonlinear force model for the hydrodynamic journal bearing of the rotor system (capable of capturing oil whirl and oil whip instabilities) as well as simulated faults (such as unbalance and rotor-stator rubbing). Since MSC.Nastran does not have a built-in nonlinear hydrodynamic journal bearing model, a custom model of such a bearing was developed and incorporated into the finite element solver, further expanding its already powerful rotor dynamic modelling capabilities. Rotor dynamic analyses performed include the calculation of critical speeds (synchronous complex modes analysis), Campbell diagrams (asynchronous complex modes analysis), steady state frequency response due to unbalance (synchronous frequency response analysis) and nonlinear transient response during rotor run-up. Amongst others, this dissertation explores the seemingly largely unexplored/undocumented capability of finite element software MSC.Nastran to perform rotor dynamic analyses using rotor models constructed with three-dimensional elements. Software (MATLAB code) was also developed to perform post-processing of the simulation results as well as signal processing for investigating the spectral content of transient results. The support structure of the laboratory-scale rotor system was experimentally characterised and an experimental modal analysis was performed on the rotor (excluding its support structure) and its results used to update the finite element rotor models. The transient dynamic response of the experimental rotor system during run-up due to unbalance and rubbing was also analysed in order to validate the developed numerical rotor system models. The numerical results are found to be in good agreement with the experimental results.