Dynamical Systems IV

Dynamical Systems IV

Author: V.I. Arnol'd

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 291

ISBN-13: 3662067935

DOWNLOAD EBOOK

This book takes a snapshot of the mathematical foundations of classical and quantum mechanics from a contemporary mathematical viewpoint. It covers a number of important recent developments in dynamical systems and mathematical physics and places them in the framework of the more classical approaches; the presentation is enhanced by many illustrative examples concerning topics which have been of especial interest to workers in the field, and by sketches of the proofs of the major results. The comprehensive bibliographies are designed to permit the interested reader to retrace the major stages in the development of the field if he wishes. Not so much a detailed textbook for plodding students, this volume, like the others in the series, is intended to lead researchers in other fields and advanced students quickly to an understanding of the 'state of the art' in this area of mathematics. As such it will serve both as a basic reference work on important areas of mathematical physics as they stand today, and as a good starting point for further, more detailed study for people new to this field.


An Introduction to Symplectic Geometry

An Introduction to Symplectic Geometry

Author: Rolf Berndt

Publisher: American Mathematical Soc.

Published: 2001

Total Pages: 226

ISBN-13: 9780821820568

DOWNLOAD EBOOK

Symplectic geometry is a central topic of current research in mathematics. Indeed, symplectic methods are key ingredients in the study of dynamical systems, differential equations, algebraic geometry, topology, mathematical physics and representations of Lie groups. This book is a true introduction to symplectic geometry, assuming only a general background in analysis and familiarity with linear algebra. It starts with the basics of the geometry of symplectic vector spaces. Then, symplectic manifolds are defined and explored. In addition to the essential classic results, such as Darboux's theorem, more recent results and ideas are also included here, such as symplectic capacity and pseudoholomorphic curves. These ideas have revolutionized the subject. The main examples of symplectic manifolds are given, including the cotangent bundle, Kähler manifolds, and coadjoint orbits. Further principal ideas are carefully examined, such as Hamiltonian vector fields, the Poisson bracket, and connections with contact manifolds. Berndt describes some of the close connections between symplectic geometry and mathematical physics in the last two chapters of the book. In particular, the moment map is defined and explored, both mathematically and in its relation to physics. He also introduces symplectic reduction, which is an important tool for reducing the number of variables in a physical system and for constructing new symplectic manifolds from old. The final chapter is on quantization, which uses symplectic methods to take classical mechanics to quantum mechanics. This section includes a discussion of the Heisenberg group and the Weil (or metaplectic) representation of the symplectic group. Several appendices provide background material on vector bundles, on cohomology, and on Lie groups and Lie algebras and their representations. Berndt's presentation of symplectic geometry is a clear and concise introduction to the major methods and applications of the subject, and requires only a minimum of prerequisites. This book would be an excellent text for a graduate course or as a source for anyone who wishes to learn about symplectic geometry.


Lectures on Symplectic Geometry

Lectures on Symplectic Geometry

Author: Ana Cannas da Silva

Publisher: Springer

Published: 2004-10-27

Total Pages: 240

ISBN-13: 354045330X

DOWNLOAD EBOOK

The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.


Structure of Dynamical Systems

Structure of Dynamical Systems

Author: J.M. Souriau

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 427

ISBN-13: 1461202817

DOWNLOAD EBOOK

The aim of the book is to treat all three basic theories of physics, namely, classical mechanics, statistical mechanics, and quantum mechanics from the same perspective, that of symplectic geometry, thus showing the unifying power of the symplectic geometric approach. Reading this book will give the reader a deep understanding of the interrelationships between the three basic theories of physics. This book is addressed to graduate students and researchers in mathematics and physics who are interested in mathematical and theoretical physics, symplectic geometry, mechanics, and (geometric) quantization.


Symplectic Geometry and Quantum Mechanics

Symplectic Geometry and Quantum Mechanics

Author: Maurice A. de Gosson

Publisher: Springer Science & Business Media

Published: 2006-08-06

Total Pages: 375

ISBN-13: 3764375752

DOWNLOAD EBOOK

This book offers a complete discussion of techniques and topics intervening in the mathematical treatment of quantum and semi-classical mechanics. It starts with a very readable introduction to symplectic geometry. Many topics are also of genuine interest for pure mathematicians working in geometry and topology.


Symplectic Geometric Algorithms for Hamiltonian Systems

Symplectic Geometric Algorithms for Hamiltonian Systems

Author: Kang Feng

Publisher: Springer Science & Business Media

Published: 2010-10-18

Total Pages: 690

ISBN-13: 3642017770

DOWNLOAD EBOOK

"Symplectic Geometric Algorithms for Hamiltonian Systems" will be useful not only for numerical analysts, but also for those in theoretical physics, computational chemistry, celestial mechanics, etc. The book generalizes and develops the generating function and Hamilton-Jacobi equation theory from the perspective of the symplectic geometry and symplectic algebra. It will be a useful resource for engineers and scientists in the fields of quantum theory, astrophysics, atomic and molecular dynamics, climate prediction, oil exploration, etc. Therefore a systematic research and development of numerical methodology for Hamiltonian systems is well motivated. Were it successful, it would imply wide-ranging applications.


Dynamical Systems IV

Dynamical Systems IV

Author: S.P. Novikov

Publisher: Springer Science & Business Media

Published: 2001-06-20

Total Pages: 352

ISBN-13: 9783540626350

DOWNLOAD EBOOK

From the reviews of the first edition:"... Here ... a wealth of material is displayed for us, too much to even indicate in a review. ... Your reviewer was very impressed by the contents of both volumes (EMS 2 and 4), recommending them without any restriction." Mededelingen van het Wiskundig genootshap 1992


Introduction to Hamiltonian Dynamical Systems and the N-Body Problem

Introduction to Hamiltonian Dynamical Systems and the N-Body Problem

Author: Kenneth R. Meyer

Publisher: Springer

Published: 2017-05-04

Total Pages: 389

ISBN-13: 3319536915

DOWNLOAD EBOOK

This third edition text provides expanded material on the restricted three body problem and celestial mechanics. With each chapter containing new content, readers are provided with new material on reduction, orbifolds, and the regularization of the Kepler problem, all of which are provided with applications. The previous editions grew out of graduate level courses in mathematics, engineering, and physics given at several different universities. The courses took students who had some background in differential equations and lead them through a systematic grounding in the theory of Hamiltonian mechanics from a dynamical systems point of view. This text provides a mathematical structure of celestial mechanics ideal for beginners, and will be useful to graduate students and researchers alike. Reviews of the second edition: "The primary subject here is the basic theory of Hamiltonian differential equations studied from the perspective of differential dynamical systems. The N-body problem is used as the primary example of a Hamiltonian system, a touchstone for the theory as the authors develop it. This book is intended to support a first course at the graduate level for mathematics and engineering students. ... It is a well-organized and accessible introduction to the subject ... . This is an attractive book ... ." (William J. Satzer, The Mathematical Association of America, March, 2009) “The second edition of this text infuses new mathematical substance and relevance into an already modern classic ... and is sure to excite future generations of readers. ... This outstanding book can be used not only as an introductory course at the graduate level in mathematics, but also as course material for engineering graduate students. ... it is an elegant and invaluable reference for mathematicians and scientists with an interest in classical and celestial mechanics, astrodynamics, physics, biology, and related fields.” (Marian Gidea, Mathematical Reviews, Issue 2010 d)


Dynamical Systems IV

Dynamical Systems IV

Author: V.I. Arnol'd

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 342

ISBN-13: 3662067919

DOWNLOAD EBOOK

From the reviews of the first edition:"... Here ... a wealth of material is displayed for us, too much to even indicate in a review. ... Your reviewer was very impressed by the contents of both volumes (EMS 2 and 4), recommending them without any restriction." Mededelingen van het Wiskundig genootshap 1992


Nonlinear Dynamical Systems Of Mathematical Physics: Spectral And Symplectic Integrability Analysis

Nonlinear Dynamical Systems Of Mathematical Physics: Spectral And Symplectic Integrability Analysis

Author: Denis Blackmore

Publisher: World Scientific

Published: 2011-03-04

Total Pages: 563

ISBN-13: 9814462713

DOWNLOAD EBOOK

This distinctive volume presents a clear, rigorous grounding in modern nonlinear integrable dynamics theory and applications in mathematical physics, and an introduction to timely leading-edge developments in the field — including some innovations by the authors themselves — that have not appeared in any other book.The exposition begins with an introduction to modern integrable dynamical systems theory, treating such topics as Liouville-Arnold and Mischenko-Fomenko integrability. This sets the stage for such topics as new formulations of the gradient-holonomic algorithm for Lax integrability, novel treatments of classical integration by quadratures, Lie-algebraic characterizations of integrability, and recent results on tensor Poisson structures. Of particular note is the development via spectral reduction of a generalized de Rham-Hodge theory, related to Delsarte-Lions operators, leading to new Chern type classes useful for integrability analysis. Also included are elements of quantum mathematics along with applications to Whitham systems, gauge theories, hadronic string models, and a supplement on fundamental differential-geometric concepts making this volume essentially self-contained.This book is ideal as a reference and guide to new directions in research for advanced students and researchers interested in the modern theory and applications of integrable (especially infinite-dimensional) dynamical systems.