Stability of Dynamical Systems

Stability of Dynamical Systems

Author: Xiaoxin Liao

Publisher: Elsevier

Published: 2007-08-01

Total Pages: 719

ISBN-13: 0080550614

DOWNLOAD EBOOK

The main purpose of developing stability theory is to examine dynamic responses of a system to disturbances as the time approaches infinity. It has been and still is the object of intense investigations due to its intrinsic interest and its relevance to all practical systems in engineering, finance, natural science and social science. This monograph provides some state-of-the-art expositions of major advances in fundamental stability theories and methods for dynamic systems of ODE and DDE types and in limit cycle, normal form and Hopf bifurcation control of nonlinear dynamic systems. Presents comprehensive theory and methodology of stability analysis Can be used as textbook for graduate students in applied mathematics, mechanics, control theory, theoretical physics, mathematical biology, information theory, scientific computation Serves as a comprehensive handbook of stability theory for practicing aerospace, control, mechanical, structural, naval and civil engineers


Stability Theory of Dynamical Systems

Stability Theory of Dynamical Systems

Author: N.P. Bhatia

Publisher: Springer Science & Business Media

Published: 2002-01-10

Total Pages: 252

ISBN-13: 9783540427483

DOWNLOAD EBOOK

Reprint of classic reference work. Over 400 books have been published in the series Classics in Mathematics, many remain standard references for their subject. All books in this series are reissued in a new, inexpensive softcover edition to make them easily accessible to younger generations of students and researchers. "... The book has many good points: clear organization, historical notes and references at the end of every chapter, and an excellent bibliography. The text is well-written, at a level appropriate for the intended audience, and it represents a very good introduction to the basic theory of dynamical systems."


Stability of Dynamical Systems

Stability of Dynamical Systems

Author:

Publisher: Springer Science & Business Media

Published: 2008

Total Pages: 516

ISBN-13: 0817644865

DOWNLOAD EBOOK

In the analysis and synthesis of contemporary systems, engineers and scientists are frequently confronted with increasingly complex models that may simultaneously include components whose states evolve along continuous time and discrete instants; components whose descriptions may exhibit nonlinearities, time lags, transportation delays, hysteresis effects, and uncertainties in parameters; and components that cannot be described by various classical equations, as in the case of discrete-event systems, logic commands, and Petri nets. The qualitative analysis of such systems requires results for finite-dimensional and infinite-dimensional systems; continuous-time and discrete-time systems; continuous continuous-time and discontinuous continuous-time systems; and hybrid systems involving a mixture of continuous and discrete dynamics. Filling a gap in the literature, this textbook presents the first comprehensive stability analysis of all the major types of system models described above. Throughout the book, the applicability of the developed theory is demonstrated by means of many specific examples and applications to important classes of systems, including digital control systems, nonlinear regulator systems, pulse-width-modulated feedback control systems, artificial neural networks (with and without time delays), digital signal processing, a class of discrete-event systems (with applications to manufacturing and computer load balancing problems) and a multicore nuclear reactor model. The book covers the following four general topics: * Representation and modeling of dynamical systems of the types described above * Presentation of Lyapunov and Lagrange stability theory for dynamical systems defined on general metric spaces * Specialization of this stability theory to finite-dimensional dynamical systems * Specialization of this stability theory to infinite-dimensional dynamical systems Replete with exercises and requiring basic knowledge of linear algebra, analysis, and differential equations, the work may be used as a textbook for graduate courses in stability theory of dynamical systems. The book may also serve as a self-study reference for graduate students, researchers, and practitioners in applied mathematics, engineering, computer science, physics, chemistry, biology, and economics.


Stability Theory for Dynamic Equations on Time Scales

Stability Theory for Dynamic Equations on Time Scales

Author: Anatoly A. Martynyuk

Publisher: Birkhäuser

Published: 2016-09-22

Total Pages: 233

ISBN-13: 3319422138

DOWNLOAD EBOOK

This monograph is a first in the world to present three approaches for stability analysis of solutions of dynamic equations. The first approach is based on the application of dynamic integral inequalities and the fundamental matrix of solutions of linear approximation of dynamic equations. The second is based on the generalization of the direct Lyapunovs method for equations on time scales, using scalar, vector and matrix-valued auxiliary functions. The third approach is the application of auxiliary functions (scalar, vector, or matrix-valued ones) in combination with differential dynamic inequalities. This is an alternative comparison method, developed for time continuous and time discrete systems.In recent decades, automatic control theory in the study of air- and spacecraft dynamics and in other areas of modern applied mathematics has encountered problems in the analysis of the behavior of solutions of time continuous-discrete linear and/or nonlinear equations of perturbed motion. In the book “Men of Mathematics,” 1937, E.T.Bell wrote: “A major task of mathematics today is to harmonize the continuous and the discrete, to include them in one comprehensive mathematics, and to eliminate obscurity from both.”Mathematical analysis on time scales accomplishes exactly this. This research has potential applications in such areas as theoretical and applied mechanics, neurodynamics, mathematical biology and finance among others.


Biological Delay Systems

Biological Delay Systems

Author: Norman MacDonald

Publisher: Cambridge University Press

Published: 2008-01-03

Total Pages: 256

ISBN-13: 9780521048163

DOWNLOAD EBOOK

In studying the dynamics of populations, whether of animals, plants or cells, it is crucial to allow for delays such as those due to gestation, maturation or transport. This book deals with a fundamental question in the analysis of the effects of delays, namely whether they affect the stability of steady states.


Dynamical Systems

Dynamical Systems

Author: Pierre N.V. Tu

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 257

ISBN-13: 3662027798

DOWNLOAD EBOOK

Dynamic tools of analysis and modelling are increasingly used in Economics and Biology and have become more and more sophisticated in recent years, to the point where the general students without training in Dynamic Systems (DS) would be at a loss. No doubt they are referred to the original sources of mathematical theorems used in the various proofs, but the level of mathematics is generally beyond them. Students are thus left with the burden of somehow understanding advanced mathematics by themselves, with· very little help. It is to these general students, equipped only with a modest background of Calculus and Matrix Algebra that this book is dedicated. It aims at providing them with a fairly comprehensive box of dynamical tools they are expected to have at their disposal. The first three Chapters start with the most elementary notions of first and second order Differential and Difference Equations. For these, no matrix theory and hardly any calculus are needed. Then, before embarking on linear and nonlinear DS, a review of some Linear Algebra in Chapter 4 provides the bulk of matrix theory required for the study of later Chapters. Systems of Linear Differ ential Equations (Ch. 5) and Difference Equations (Ch. 6) then follow to provide students with a good background in linear DS, necessary for the subsequent study of nonlinear systems. Linear Algebra, reviewed in Ch. 4, is used freely in these and subsequent chapters to save space and time.