Statistical Methods for Dynamic Treatment Regimes

Statistical Methods for Dynamic Treatment Regimes

Author: Bibhas Chakraborty

Publisher: Springer Science & Business Media

Published: 2013-07-23

Total Pages: 220

ISBN-13: 1461474280

DOWNLOAD EBOOK

Statistical Methods for Dynamic Treatment Regimes shares state of the art of statistical methods developed to address questions of estimation and inference for dynamic treatment regimes, a branch of personalized medicine. This volume demonstrates these methods with their conceptual underpinnings and illustration through analysis of real and simulated data. These methods are immediately applicable to the practice of personalized medicine, which is a medical paradigm that emphasizes the systematic use of individual patient information to optimize patient health care. This is the first single source to provide an overview of methodology and results gathered from journals, proceedings, and technical reports with the goal of orienting researchers to the field. The first chapter establishes context for the statistical reader in the landscape of personalized medicine. Readers need only have familiarity with elementary calculus, linear algebra, and basic large-sample theory to use this text. Throughout the text, authors direct readers to available code or packages in different statistical languages to facilitate implementation. In cases where code does not already exist, the authors provide analytic approaches in sufficient detail that any researcher with knowledge of statistical programming could implement the methods from scratch. This will be an important volume for a wide range of researchers, including statisticians, epidemiologists, medical researchers, and machine learning researchers interested in medical applications. Advanced graduate students in statistics and biostatistics will also find material in Statistical Methods for Dynamic Treatment Regimes to be a critical part of their studies.


Dynamic Treatment Regimes

Dynamic Treatment Regimes

Author: Anastasios A. Tsiatis

Publisher: CRC Press

Published: 2019-12-19

Total Pages: 602

ISBN-13: 1498769780

DOWNLOAD EBOOK

Dynamic Treatment Regimes: Statistical Methods for Precision Medicine provides a comprehensive introduction to statistical methodology for the evaluation and discovery of dynamic treatment regimes from data. Researchers and graduate students in statistics, data science, and related quantitative disciplines with a background in probability and statistical inference and popular statistical modeling techniques will be prepared for further study of this rapidly evolving field. A dynamic treatment regime is a set of sequential decision rules, each corresponding to a key decision point in a disease or disorder process, where each rule takes as input patient information and returns the treatment option he or she should receive. Thus, a treatment regime formalizes how a clinician synthesizes patient information and selects treatments in practice. Treatment regimes are of obvious relevance to precision medicine, which involves tailoring treatment selection to patient characteristics in an evidence-based way. Of critical importance to precision medicine is estimation of an optimal treatment regime, one that, if used to select treatments for the patient population, would lead to the most beneficial outcome on average. Key methods for estimation of an optimal treatment regime from data are motivated and described in detail. A dedicated companion website presents full accounts of application of the methods using a comprehensive R package developed by the authors. The authors’ website www.dtr-book.com includes updates, corrections, new papers, and links to useful websites.


Statistical Remedies for Medical Researchers

Statistical Remedies for Medical Researchers

Author: Peter F. Thall

Publisher: Springer Nature

Published: 2020-03-12

Total Pages: 297

ISBN-13: 3030437140

DOWNLOAD EBOOK

This book illustrates numerous statistical practices that are commonly used by medical researchers, but which have severe flaws that may not be obvious. For each example, it provides one or more alternative statistical methods that avoid misleading or incorrect inferences being made. The technical level is kept to a minimum to make the book accessible to non-statisticians. At the same time, since many of the examples describe methods used routinely by medical statisticians with formal statistical training, the book appeals to a broad readership in the medical research community.


Adaptive Treatment Strategies in Practice: Planning Trials and Analyzing Data for Personalized Medicine

Adaptive Treatment Strategies in Practice: Planning Trials and Analyzing Data for Personalized Medicine

Author: Michael R. Kosorok

Publisher: SIAM

Published: 2015-12-08

Total Pages: 348

ISBN-13: 1611974186

DOWNLOAD EBOOK

Personalized medicine is a medical paradigm that emphasizes systematic use of individual patient information to optimize that patient's health care, particularly in managing chronic conditions and treating cancer. In the statistical literature, sequential decision making is known as an adaptive treatment strategy (ATS) or a dynamic treatment regime (DTR). The field of DTRs emerges at the interface of statistics, machine learning, and biomedical science to provide a data-driven framework for precision medicine. The authors provide a learning-by-seeing approach to the development of ATSs, aimed at a broad audience of health researchers. All estimation procedures used are described in sufficient heuristic and technical detail so that less quantitative readers can understand the broad principles underlying the approaches. At the same time, more quantitative readers can implement these practices. This book provides the most up-to-date summary of the current state of the statistical research in personalized medicine; contains chapters by leaders in the area from both the statistics and computer sciences fields; and also contains a range of practical advice, introductory and expository materials, and case studies.


Targeted Learning

Targeted Learning

Author: Mark J. van der Laan

Publisher: Springer Science & Business Media

Published: 2011-06-17

Total Pages: 628

ISBN-13: 1441997822

DOWNLOAD EBOOK

The statistics profession is at a unique point in history. The need for valid statistical tools is greater than ever; data sets are massive, often measuring hundreds of thousands of measurements for a single subject. The field is ready to move towards clear objective benchmarks under which tools can be evaluated. Targeted learning allows (1) the full generalization and utilization of cross-validation as an estimator selection tool so that the subjective choices made by humans are now made by the machine, and (2) targeting the fitting of the probability distribution of the data toward the target parameter representing the scientific question of interest. This book is aimed at both statisticians and applied researchers interested in causal inference and general effect estimation for observational and experimental data. Part I is an accessible introduction to super learning and the targeted maximum likelihood estimator, including related concepts necessary to understand and apply these methods. Parts II-IX handle complex data structures and topics applied researchers will immediately recognize from their own research, including time-to-event outcomes, direct and indirect effects, positivity violations, case-control studies, censored data, longitudinal data, and genomic studies.


Proceedings of the Second Seattle Symposium in Biostatistics

Proceedings of the Second Seattle Symposium in Biostatistics

Author: Danyu Lin

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 332

ISBN-13: 1441990763

DOWNLOAD EBOOK

This volume contains a selection of papers presented at the Second Seattle Symposium in Biostatistics: Analysis of Correlated Data. The symposium was held in 2000 to celebrate the 30th anniversary of the University of Washington School of Public Health and Community Medicine. It featured keynote lectures by Norman Breslow, David Cox and Ross Prentice and 16 invited presentations by other prominent researchers. The papers contained in this volume encompass recent methodological advances in several important areas, such as longitudinal data, multivariate failure time data and genetic data, as well as innovative applications of the existing theory and methods. This volume is a valuable reference for researchers and practitioners in the field of correlated data analysis.


Bayesian Designs for Phase I-II Clinical Trials

Bayesian Designs for Phase I-II Clinical Trials

Author: Ying Yuan

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 238

ISBN-13: 1315354225

DOWNLOAD EBOOK

Reliably optimizing a new treatment in humans is a critical first step in clinical evaluation since choosing a suboptimal dose or schedule may lead to failure in later trials. At the same time, if promising preclinical results do not translate into a real treatment advance, it is important to determine this quickly and terminate the clinical evaluation process to avoid wasting resources. Bayesian Designs for Phase I–II Clinical Trials describes how phase I–II designs can serve as a bridge or protective barrier between preclinical studies and large confirmatory clinical trials. It illustrates many of the severe drawbacks with conventional methods used for early-phase clinical trials and presents numerous Bayesian designs for human clinical trials of new experimental treatment regimes. Written by research leaders from the University of Texas MD Anderson Cancer Center, this book shows how Bayesian designs for early-phase clinical trials can explore, refine, and optimize new experimental treatments. It emphasizes the importance of basing decisions on both efficacy and toxicity.


Reinforcement Learning and Dynamic Programming Using Function Approximators

Reinforcement Learning and Dynamic Programming Using Function Approximators

Author: Lucian Busoniu

Publisher: CRC Press

Published: 2017-07-28

Total Pages: 280

ISBN-13: 1439821097

DOWNLOAD EBOOK

From household appliances to applications in robotics, engineered systems involving complex dynamics can only be as effective as the algorithms that control them. While Dynamic Programming (DP) has provided researchers with a way to optimally solve decision and control problems involving complex dynamic systems, its practical value was limited by algorithms that lacked the capacity to scale up to realistic problems. However, in recent years, dramatic developments in Reinforcement Learning (RL), the model-free counterpart of DP, changed our understanding of what is possible. Those developments led to the creation of reliable methods that can be applied even when a mathematical model of the system is unavailable, allowing researchers to solve challenging control problems in engineering, as well as in a variety of other disciplines, including economics, medicine, and artificial intelligence. Reinforcement Learning and Dynamic Programming Using Function Approximators provides a comprehensive and unparalleled exploration of the field of RL and DP. With a focus on continuous-variable problems, this seminal text details essential developments that have substantially altered the field over the past decade. In its pages, pioneering experts provide a concise introduction to classical RL and DP, followed by an extensive presentation of the state-of-the-art and novel methods in RL and DP with approximation. Combining algorithm development with theoretical guarantees, they elaborate on their work with illustrative examples and insightful comparisons. Three individual chapters are dedicated to representative algorithms from each of the major classes of techniques: value iteration, policy iteration, and policy search. The features and performance of these algorithms are highlighted in extensive experimental studies on a range of control applications. The recent development of applications involving complex systems has led to a surge of interest in RL and DP methods and the subsequent need for a quality resource on the subject. For graduate students and others new to the field, this book offers a thorough introduction to both the basics and emerging methods. And for those researchers and practitioners working in the fields of optimal and adaptive control, machine learning, artificial intelligence, and operations research, this resource offers a combination of practical algorithms, theoretical analysis, and comprehensive examples that they will be able to adapt and apply to their own work. Access the authors' website at www.dcsc.tudelft.nl/rlbook/ for additional material, including computer code used in the studies and information concerning new developments.


Disease Control Priorities, Third Edition (Volume 6)

Disease Control Priorities, Third Edition (Volume 6)

Author: King K. Holmes

Publisher: World Bank Publications

Published: 2017-11-06

Total Pages: 1027

ISBN-13: 1464805253

DOWNLOAD EBOOK

Infectious diseases are the leading cause of death globally, particularly among children and young adults. The spread of new pathogens and the threat of antimicrobial resistance pose particular challenges in combating these diseases. Major Infectious Diseases identifies feasible, cost-effective packages of interventions and strategies across delivery platforms to prevent and treat HIV/AIDS, other sexually transmitted infections, tuberculosis, malaria, adult febrile illness, viral hepatitis, and neglected tropical diseases. The volume emphasizes the need to effectively address emerging antimicrobial resistance, strengthen health systems, and increase access to care. The attainable goals are to reduce incidence, develop innovative approaches, and optimize existing tools in resource-constrained settings.


Exposure-Response Modeling

Exposure-Response Modeling

Author: Jixian Wang

Publisher: CRC Press

Published: 2015-07-17

Total Pages: 348

ISBN-13: 146657321X

DOWNLOAD EBOOK

Discover the Latest Statistical Approaches for Modeling Exposure-Response RelationshipsWritten by an applied statistician with extensive practical experience in drug development, Exposure-Response Modeling: Methods and Practical Implementation explores a wide range of topics in exposure-response modeling, from traditional pharmacokinetic-pharmacody