Dynamic Restoration Strategy for Distribution System Resilience Enhancement
Author: Weijia Liu
Publisher:
Published: 2020
Total Pages: 1
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author: Weijia Liu
Publisher:
Published: 2020
Total Pages: 1
ISBN-13:
DOWNLOAD EBOOKAuthor: Mingfei Ban
Publisher: Frontiers Media SA
Published: 2024-02-21
Total Pages: 150
ISBN-13: 2832545017
DOWNLOAD EBOOKThe global energy system is undergoing a profound transformation from a system based mainly on fossil fuels to a low-carbon one based on variable renewable energy (VRE), such as wind power and solar power, to achieve the 2050 Paris Agreement. By 2050, solar and wind power, with more than 14,500 GW installed capacity, would account for three-fifths of global electricity generation. This transformation comes with significant challenges since high VRE shares will greatly increase system flexibility requirements for balancing supply and demand. Accordingly, all sectors of the power system need to unlock further requisite flexibility through technology, business, and policy innovations, including power supply, transmission, distribution, storage, and demand.
Author: Mohammad Taghi Ameli
Publisher: Elsevier
Published: 2024-02-23
Total Pages: 440
ISBN-13: 0443160872
DOWNLOAD EBOOKFuture Modern Distribution Networks Resilience examines the combined impact of low-probability and high-impact events on modern distribution systems' resilience. Using practical guidance, the book provides comprehensive approaches for improving energy systems' resilience by utilizing infrastructure and operational strategies. Divided in three parts, Part One provides a conceptual introduction and review of power system resilience, including topics such as risk and vulnerability assessment in power systems, resilience metrics, and power systems operation and planning. Part Two discusses modelling of vulnerability and resilience evaluation indices and cost-benefit analysis. Part Three reviews infrastructure and operational strategies to improve power system resilience, including robust grid hardening strategies, mobile energy storage and electric vehicles, and networked microgrids and renewable energy resources. With a strong focus on economic results and cost-effectives, Future Modern Distribution Networks Resilience is a practical reference for students, researchers and engineers interested in power engineering, energy systems, and renewable energy. - Reviews related concepts to active distribution systems resilience before, during, and after a sudden disaster - Presents analysis of risk and vulnerability for reliable evaluation, sustainable operation, and accurate planning of energy grids against low-probability and high-impact events - Highlights applications of practical metrics for resilience assessment of future energy networks - Provides guidance for the development of cost-effective resilient techniques for reducing the vulnerability of electrical grids to severe disasters
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
Published: 2017-10-25
Total Pages: 171
ISBN-13: 0309463076
DOWNLOAD EBOOKAmericans' safety, productivity, comfort, and convenience depend on the reliable supply of electric power. The electric power system is a complex "cyber-physical" system composed of a network of millions of components spread out across the continent. These components are owned, operated, and regulated by thousands of different entities. Power system operators work hard to assure safe and reliable service, but large outages occasionally happen. Given the nature of the system, there is simply no way that outages can be completely avoided, no matter how much time and money is devoted to such an effort. The system's reliability and resilience can be improved but never made perfect. Thus, system owners, operators, and regulators must prioritize their investments based on potential benefits. Enhancing the Resilience of the Nation's Electricity System focuses on identifying, developing, and implementing strategies to increase the power system's resilience in the face of events that can cause large-area, long-duration outages: blackouts that extend over multiple service areas and last several days or longer. Resilience is not just about lessening the likelihood that these outages will occur. It is also about limiting the scope and impact of outages when they do occur, restoring power rapidly afterwards, and learning from these experiences to better deal with events in the future.
Author: Shunbo Lei
Publisher: John Wiley & Sons
Published: 2023-02-13
Total Pages: 340
ISBN-13: 1119801478
DOWNLOAD EBOOKPOWER GRID RESILIENCE AGAINST NATURAL DISASTERS How to protect our power grids in the face of extreme weather events The field of structural and operational resilience of power systems, particularly against natural disasters, is of obvious importance in light of climate change and the accompanying increase in hurricanes, wildfires, tornados, frigid temperatures, and more. Addressing these vulnerabilities in service is a matter of increasing diligence for the electric power industry, and as such, targeted studies and advanced technologies are being developed to help address these issues generally—whether they be from the threat of cyber-attacks or of natural disasters. Power Grid Resilience against Natural Disasters provides, for the first time, a comprehensive and systematic introduction to resilience-enhancing planning and operation strategies of power grids against extreme events. It addresses, in detail, the three necessary steps to ensure power grid success: the preparedness prior to natural disasters, the response as natural disasters unfold, and the recovery after the event. Crucially, the authors put forward state-of-the-art methods towards improving today’s practices in managing these three arenas. Power Grid Resilience against Natural Disasters readers will also find: Data, tables, and illustrations to supplement and clarify the points put forward in each chapter Case studies on realistic power systems and industry standards and practices related to the topics covered Potential to be a supplementary text in advanced level power engineering courses Power Grid Resilience against Natural Disasters will be of interest to specialists and engineers, as well as planners and operators from industry. It can also be a useful resource for senior undergraduate students, postgraduate students, researchers, and research libraries. More, it will appeal to all readers with a strong background in power system analysis, operation and control, optimization methods, the Markov decision process, and probability and statistics.
Author: Naser Mahdavi Tabatabaei
Publisher: Springer
Published: 2018-08-16
Total Pages: 366
ISBN-13: 3319944428
DOWNLOAD EBOOKThis book presents intuitive explanations of the principles and applications of power system resiliency, as well as a number of straightforward and practical methods for the impact analysis of risk events on power system operations. It also describes the challenges of modelling, distribution networks, optimal scheduling, multi-stage planning, deliberate attacks, cyber-physical systems and SCADA-based smart grids, and how to overcome these challenges. Further, it highlights the resiliency issues using various methods, including strengthening the system against high impact events with low frequency and the fast recovery of the system properties. A large number of specialists have collaborated to provide innovative solutions and research in power systems resiliency. They discuss the fundamentals and contemporary materials of power systems resiliency, theoretical and practical issues, as well as current issues and methods for controlling the risk attacks and other threats to AC power systems. The book includes theoretical research, significant results, case studies, and practical implementation processes to offer insights into electric power and engineering and energy systems. Showing how systems should respond in case of malicious attacks, and helping readers to decide on the best approaches, this book is essential reading for electrical engineers, researchers and specialists. The book is also useful as a reference for undergraduate and graduate students studying the resiliency and reliability of power systems.
Author: Yumin Zhang
Publisher: Frontiers Media SA
Published: 2024-09-18
Total Pages: 294
ISBN-13: 2832554377
DOWNLOAD EBOOKDue to the inherent volatility and randomness, the increasing share of energy from renewable resources presents a challenge to the operation of multi-energy systems with heterogeneous energy carriers such as electricity, heat, hydrogen, etc. These factors will make the systems hard to adjust their supply and demand flexibly to maintain energy balance to ensure reliability. Further, this hinders the development of a low-carbon and economically viable energy system. By making full use of the synergistic interaction of generation, transmission, load demand, and energy storage, a three-fold approach focused on quantifying demand flexibility, evaluating supply capabilities, and enhancing resilience can unlock the flexibility potential across various sectors of new energy systems. This approach provides an effective means of facilitating the transition from conventional energy systems to low-carbon, clean-energy-oriented paradigms. However, huge challenges arising from renewable energy pose great obstacles to the aforementioned solution pathway. The main objectives of this Research Topic are: 1. Develop advanced carbon emission accounting and measurement techniques for emerging multi-energy systems 2. Design effective methods for predicting renewable electricity generation 3. Proposed efficient methods for quantitative assessment of uncertainty from renewables and loads 4. Put forward advanced evaluation, optimization, and planning strategies incorporating diverse flexibility resources 5. Design multifaceted market mechanisms and collaborative frameworks balancing economics and low carbon footprint 6. Develop operational control and resilience-enhancement techniques for distribution networks under large-scale distributed energy integration
Author: Guangwei Huang
Publisher: BoD – Books on Demand
Published: 2020-12-16
Total Pages: 208
ISBN-13: 1839626259
DOWNLOAD EBOOKThe concept of resilience has been gaining momentum in various fields in recent years and has been used in various ways from a catch phrase to a cornerstone in theoretic development or practical operation. No matter how it is used, it does contribute one way or another to the refinement and application of the concept. This book focuses on the application of the resilience concept to flood disaster management. This book is a collection of research works conducted across the world and across sectors. Therefore, it is a good example of how different perspectives can catalyze our insight into complex flood-related issues. It can be considered valuable reading material for students, researchers, policymakers and practitioners, because it provides both the fundamentals and new development of resilience-based approaches and delivers a message that the goal of resilience-based flood management goes beyond disaster reduction.
Author: Kai Sun
Publisher: John Wiley & Sons
Published: 2019-01-29
Total Pages: 469
ISBN-13: 1119282020
DOWNLOAD EBOOKOffers a comprehensive introduction to the issues of control of power systems during cascading outages and restoration process Power System Control Under Cascading Failures offers comprehensive coverage of three major topics related to prevention of cascading power outages in a power transmission grid: modelling and analysis, system separation and power system restoration. The book examines modelling and analysis of cascading failures for reliable and efficient simulation and better understanding of important mechanisms, root causes and propagation patterns of failures and power outages. Second, it covers controlled system separation to mitigate cascading failures addressing key questions such as where, when and how to separate. Third, the text explores optimal system restoration from cascading power outages and blackouts by well-designed milestones, optimised procedures and emerging techniques. The authors — noted experts in the field — include state-of-the-art methods that are illustrated in detail as well as practical examples that show how to use them to address realistic problems and improve current practices. This important resource: Contains comprehensive coverage of a focused area of cascading power system outages, addressing modelling and analysis, system separation and power system restoration Offers a description of theoretical models to analyse outages, methods to identify control actions to prevent propagation of outages and restore the system Suggests state-of-the-art methods that are illustrated in detail with hands-on examples that address realistic problems to help improve current practices Includes companion website with samples, codes and examples to support the text Written for postgraduate students, researchers, specialists, planners and operation engineers from industry, Power System Control Under Cascading Failures contains a review of a focused area of cascading power system outages, addresses modelling and analysis, system separation, and power system restoration.
Author: Weijia Liu
Publisher:
Published: 2020
Total Pages: 5
ISBN-13:
DOWNLOAD EBOOK