Dynamic Programming Multi-Objective Combinatorial Optimization

Dynamic Programming Multi-Objective Combinatorial Optimization

Author: Michal Mankowski

Publisher: Springer Nature

Published: 2021-02-08

Total Pages: 213

ISBN-13: 3030639207

DOWNLOAD EBOOK

This book introduces a fairly universal approach to the design and analysis of exact optimization algorithms for multi-objective combinatorial optimization problems. It proposes the circuits without repetitions representing the sets of feasible solutions along with the increasing and strictly increasing cost functions as a model for such problems. The book designs the algorithms for multi-stage and bi-criteria optimization and for counting the solutions in the framework of this model. As applications, this book studies eleven known combinatorial optimization problems: matrix chain multiplication, global sequence alignment, optimal paths in directed graphs, binary search trees, convex polygon triangulation, line breaking (text justification), one-dimensional clustering, optimal bitonic tour, segmented least squares, optimization of matchings in trees, and 0/1 knapsack problem. The results presented are useful for researchers in combinatorial optimization. This book is also useful as the basis for graduate courses.


Multi-Objective Combinatorial Optimization Problems and Solution Methods

Multi-Objective Combinatorial Optimization Problems and Solution Methods

Author: Mehdi Toloo

Publisher: Academic Press

Published: 2022-02-09

Total Pages: 316

ISBN-13: 0128238003

DOWNLOAD EBOOK

Multi-Objective Combinatorial Optimization Problems and Solution Methods discusses the results of a recent multi-objective combinatorial optimization achievement that considered metaheuristic, mathematical programming, heuristic, hyper heuristic and hybrid approaches. In other words, the book presents various multi-objective combinatorial optimization issues that may benefit from different methods in theory and practice. Combinatorial optimization problems appear in a wide range of applications in operations research, engineering, biological sciences and computer science, hence many optimization approaches have been developed that link the discrete universe to the continuous universe through geometric, analytic and algebraic techniques. This book covers this important topic as computational optimization has become increasingly popular as design optimization and its applications in engineering and industry have become ever more important due to more stringent design requirements in modern engineering practice. - Presents a collection of the most up-to-date research, providing a complete overview of multi-objective combinatorial optimization problems and applications - Introduces new approaches to handle different engineering and science problems, providing the field with a collection of related research not already covered in the primary literature - Demonstrates the efficiency and power of the various algorithms, problems and solutions, including numerous examples that illustrate concepts and algorithms


Recent Advances and Historical Development of Vector Optimization

Recent Advances and Historical Development of Vector Optimization

Author: Johannes Jahn

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 409

ISBN-13: 3642466184

DOWNLOAD EBOOK

In vector optimization one investigates optimization problems in an abstract setting which have a not necessarily real-valued objective function. This scientific discipline is closely related to multi-objective optimization and multi-criteria decision making. This book contains refereed contributions to the "International Conference on Vector Optimization" held at the Technical University of Darmstadt from August 4-7, 1986. This meeting was an interdisciplinary forum devoted to new results in the theory, to applications as well as to the solution of vector optimization problems which are relevant in practice. Because of the great variety of topics covered by the contributions, the 25 articles of this volume are organized in different sections: Historical retrospect, mathematical theory, goal setting and decision making, engineering applications, and related topics. The papers of the invited State-of-the-Art Tutorials given by Professors J.M. Borwein, H. Eschenauer, W. Stadler and P.L. Yu are also included.


Multi-Objective Optimization in Computational Intelligence: Theory and Practice

Multi-Objective Optimization in Computational Intelligence: Theory and Practice

Author: Thu Bui, Lam

Publisher: IGI Global

Published: 2008-05-31

Total Pages: 496

ISBN-13: 1599045001

DOWNLOAD EBOOK

Multi-objective optimization (MO) is a fast-developing field in computational intelligence research. Giving decision makers more options to choose from using some post-analysis preference information, there are a number of competitive MO techniques with an increasingly large number of MO real-world applications. Multi-Objective Optimization in Computational Intelligence: Theory and Practice explores the theoretical, as well as empirical, performance of MOs on a wide range of optimization issues including combinatorial, real-valued, dynamic, and noisy problems. This book provides scholars, academics, and practitioners with a fundamental, comprehensive collection of research on multi-objective optimization techniques, applications, and practices.


Intelligence Science III

Intelligence Science III

Author: Zhongzhi Shi

Publisher: Springer Nature

Published: 2021-04-14

Total Pages: 317

ISBN-13: 303074826X

DOWNLOAD EBOOK

This book constitutes the refereed post-conference proceedings of the 4th International Conference on Intelligence Science, ICIS 2020, held in Durgapur, India, in February 2021 (originally November 2020). The 23 full papers and 4 short papers presented were carefully reviewed and selected from 42 submissions. One extended abstract is also included. They deal with key issues in brain cognition; uncertain theory; machine learning; data intelligence; language cognition; vision cognition; perceptual intelligence; intelligent robot; and medical artificial intelligence.


Fixed Point Theory, Variational Analysis, and Optimization

Fixed Point Theory, Variational Analysis, and Optimization

Author: Saleh Abdullah R. Al-Mezel

Publisher: CRC Press

Published: 2014-06-03

Total Pages: 368

ISBN-13: 1482222086

DOWNLOAD EBOOK

Fixed Point Theory, Variational Analysis, and Optimization not only covers three vital branches of nonlinear analysis-fixed point theory, variational inequalities, and vector optimization-but also explains the connections between them, enabling the study of a general form of variational inequality problems related to the optimality conditions invol


Encyclopedia of Optimization

Encyclopedia of Optimization

Author: Christodoulos A. Floudas

Publisher: Springer Science & Business Media

Published: 2008-09-04

Total Pages: 4646

ISBN-13: 0387747583

DOWNLOAD EBOOK

The goal of the Encyclopedia of Optimization is to introduce the reader to a complete set of topics that show the spectrum of research, the richness of ideas, and the breadth of applications that has come from this field. The second edition builds on the success of the former edition with more than 150 completely new entries, designed to ensure that the reference addresses recent areas where optimization theories and techniques have advanced. Particularly heavy attention resulted in health science and transportation, with entries such as "Algorithms for Genomics", "Optimization and Radiotherapy Treatment Design", and "Crew Scheduling".


Multi-Objective Programming and Goal Programming

Multi-Objective Programming and Goal Programming

Author: Tetsuzo Tanino

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 435

ISBN-13: 3540365109

DOWNLOAD EBOOK

This volume constitutes the proceedings of the Fifth International Conference on Multi-Objective Programming and Goal Programming: Theory & Appli cations (MOPGP'02) held in Nara, Japan on June 4-7, 2002. Eighty-two people from 16 countries attended the conference and 78 papers (including 9 plenary talks) were presented. MOPGP is an international conference within which researchers and prac titioners can meet and learn from each other about the recent development in multi-objective programming and goal programming. The participants are from different disciplines such as Optimization, Operations Research, Math ematical Programming and Multi-Criteria Decision Aid, whose common in terest is in multi-objective analysis. The first MOPGP Conference was held at Portsmouth, United Kingdom, in 1994. The subsequent conferenes were held at Torremolinos, Spain in 1996, at Quebec City, Canada in 1998, and at Katowice, Poland in 2000. The fifth conference was held at Nara, which was the capital of Japan for more than seventy years in the eighth century. During this Nara period the basis of Japanese society, or culture established itself. Nara is a beautiful place and has a number of historic monuments in the World Heritage List. The members of the International Committee of MOPGP'02 were Dylan Jones, Pekka Korhonen, Carlos Romero, Ralph Steuer and Mehrdad Tamiz.


Proceedings

Proceedings

Author: Michel Verleysen

Publisher: Presses universitaires de Louvain

Published: 2015

Total Pages: 615

ISBN-13: 2875870157

DOWNLOAD EBOOK


Advances in Multi-Objective Nature Inspired Computing

Advances in Multi-Objective Nature Inspired Computing

Author: Carlos Coello Coello

Publisher: Springer Science & Business Media

Published: 2010-02-04

Total Pages: 204

ISBN-13: 364211217X

DOWNLOAD EBOOK

The purpose of this book is to collect contributions that deal with the use of nature inspired metaheuristics for solving multi-objective combinatorial optimization problems. Such a collection intends to provide an overview of the state-of-the-art developments in this field, with the aim of motivating more researchers in operations research, engineering, and computer science, to do research in this area. As such, this book is expected to become a valuable reference for those wishing to do research on the use of nature inspired metaheuristics for solving multi-objective combinatorial optimization problems.