This book is an integrated work published in two volumes. The first volume treats the basic Markov process and its variants; the second, semi-Markov and decision processes. Its intent is to equip readers to formulate, analyze, and evaluate simple and advanced Markov models of systems, ranging from genetics and space engineering to marketing. More than a collection of techniques, it constitutes a guide to the consistent application of the fundamental principles of probability and linear system theory. Author Ronald A. Howard, Professor of Management Science and Engineering at Stanford University, begins with the basic Markov model, proceeding to systems analyses of linear processes and Markov processes, transient Markov processes and Markov process statistics, and statistics and inference. Subsequent chapters explore recurrent events and random walks, Markovian population models, and time-varying Markov processes. Volume I concludes with a pair of helpful indexes.
This book is an integrated work published in two volumes. The first volume treats the basic Markov process and its variants; the second, semi-Markov and decision processes. Its intent is to equip readers to formulate, analyze, and evaluate simple and advanced Markov models of systems, ranging from genetics and space engineering to marketing. More than a collection of techniques, it constitutes a guide to the consistent application of the fundamental principles of probability and linear system theory. Author Ronald A. Howard, Professor of Management Science and Engineering at Stanford University, continues his treatment from Volume I with surveys of the discrete- and continuous-time semi-Markov processes, continuous-time Markov processes, and the optimization procedure of dynamic programming. The final chapter reviews the preceding material, focusing on the decision processes with discussions of decision structure, value and policy iteration, and examples of infinite duration and transient processes. Volume II concludes with an appendix listing the properties of congruent matrix multiplication.
Featuring aerospace examples and applications, Reliability Analysis of Dynamic Systems presents the very latest probabilistic techniques for accurate and efficient dynamic system reliability analysis. While other books cover more broadly the reliability techniques and challenges related to large systems, Dr Bin Wu presents a focused discussion of new methods particularly relevant to the reliability analysis of large aerospace systems under harmonic loads in the low frequency range. Developed and written to help you respond to challenges such as non-linearity of the failure surface, intensive computational costs and complexity in your dynamic system, Reliability Analysis of Dynamic Systems is a specific, detailed and application-focused reference for engineers, researchers and graduate students looking for the latest modeling solutions. The Shanghai Jiao Tong University Press Aerospace Series publishes titles that cover the latest advances in research and development in aerospace. Its scope includes theoretical studies, design methods, and real-world implementations and applications. The readership for the series is broad, reflecting the wide range of aerospace interest and application, but focuses on engineering. Forthcoming titles in the Shanghai Jiao Tong University Press Aerospace Series: Reliability Analysis of Dynamic Systems • Wake Vortex Control • Aeroacoustics: Fundamentals and Applications in Aeropropulsion Systems • Computational Intelligence in Aerospace Design • Unsteady Flow and Aeroelasticity in Turbomachinery - Authored by a leading figure in Chinese aerospace with 20 years' professional experience in reliability analysis and engineering simulation. - Offers solutions to the challenges of non-linearity, intensive computational cost and complexity in reliability assessment. - Aerospace applications and examples used throughout to illustrate accuracy and efficiency achieved with new methods.
Certainty exists only in idealized models. Viewed as the quantification of uncertainties, probabilitry and random processes play a significant role in modern engineering, particularly in areas such as structural dynamics. Unlike this book, however, few texts develop applied probability in the practical manner appropriate for engineers. Probability Models in Engineering and Science provides a comprehensive, self-contained introduction to applied probabilistic modeling. The first four chapters present basic concepts in probability and random variables, and while doing so, develop methods for static problems. The remaining chapters address dynamic problems, where time is a critical parameter in the randomness. Highlights of the presentation include numerous examples and illustrations and an engaging, human connection to the subject, achieved through short biographies of some of the key people in the field. End-of-chapter problems help solidify understanding and footnotes to the literature expand the discussions and introduce relevant journals and texts. This book builds the background today's engineers need to deal explicitly with the scatter observed in experimental data and with intricate dynamic behavior. Designed for undergraduate and graduate coursework as well as self-study, the text's coverage of theory, approximation methods, and numerical methods make it equally valuable to practitioners.
Summary Practical Probabilistic Programming introduces the working programmer to probabilistic programming. In it, you'll learn how to use the PP paradigm to model application domains and then express those probabilistic models in code. Although PP can seem abstract, in this book you'll immediately work on practical examples, like using the Figaro language to build a spam filter and applying Bayesian and Markov networks, to diagnose computer system data problems and recover digital images. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology The data you accumulate about your customers, products, and website users can help you not only to interpret your past, it can also help you predict your future! Probabilistic programming uses code to draw probabilistic inferences from data. By applying specialized algorithms, your programs assign degrees of probability to conclusions. This means you can forecast future events like sales trends, computer system failures, experimental outcomes, and many other critical concerns. About the Book Practical Probabilistic Programming introduces the working programmer to probabilistic programming. In this book, you’ll immediately work on practical examples like building a spam filter, diagnosing computer system data problems, and recovering digital images. You’ll discover probabilistic inference, where algorithms help make extended predictions about issues like social media usage. Along the way, you’ll learn to use functional-style programming for text analysis, object-oriented models to predict social phenomena like the spread of tweets, and open universe models to gauge real-life social media usage. The book also has chapters on how probabilistic models can help in decision making and modeling of dynamic systems. What's Inside Introduction to probabilistic modeling Writing probabilistic programs in Figaro Building Bayesian networks Predicting product lifecycles Decision-making algorithms About the Reader This book assumes no prior exposure to probabilistic programming. Knowledge of Scala is helpful. About the Author Avi Pfeffer is the principal developer of the Figaro language for probabilistic programming. Table of Contents PART 1 INTRODUCING PROBABILISTIC PROGRAMMING AND FIGARO Probabilistic programming in a nutshell A quick Figaro tutorial Creating a probabilistic programming application PART 2 WRITING PROBABILISTIC PROGRAMS Probabilistic models and probabilistic programs Modeling dependencies with Bayesian and Markov networks Using Scala and Figaro collections to build up models Object-oriented probabilistic modeling Modeling dynamic systems PART 3 INFERENCE The three rules of probabilistic inference Factored inference algorithms Sampling algorithms Solving other inference tasks Dynamic reasoning and parameter learning
This book is aimed at both researchers and practitioners, and provides a collection of expert systems in manufacturing and production engineering along with their knowledge base and rules. We believe that inclusion of the knowledge base and associated rules is essential if practitioners are to derive full benefit from these expert systems. This unique book is the result of our belief and the efforts of our distinguished colleagues who subscribe to this philosophy. A total of 15 different expert systems are included in this book. These expert systems are preceded by an introductory chapter written by Kuo, Preface XVll Mital and Anand. The expert system rules are included on a floppy disk in ASCII and can be easily accessed. These rules and the description of the expert system's structure should assist the users in customizing these systems. Overall, the expert systems included in this volume cover a fairly wide variety of manufacturing and production engineering topics.
This book proposes the formulation of an efficient methodology that estimates energy system uncertainty and predicts Remaining Useful Life (RUL) accurately with significantly reduced RUL prediction uncertainty. Renewable and non-renewable sources of energy are being used to supply the demands of societies worldwide. These sources are mainly thermo-chemo-electro-mechanical systems that are subject to uncertainty in future loading conditions, material properties, process noise, and other design parameters.It book informs the reader of existing and new ideas that will be implemented in RUL prediction of energy systems in the future. The book provides case studies, illustrations, graphs, and charts. Its chapters consider engineering, reliability, prognostics and health management, probabilistic multibody dynamical analysis, peridynamic and finite-element modelling, computer science, and mathematics.
Handbook of Probabilistic Models carefully examines the application of advanced probabilistic models in conventional engineering fields. In this comprehensive handbook, practitioners, researchers and scientists will find detailed explanations of technical concepts, applications of the proposed methods, and the respective scientific approaches needed to solve the problem. This book provides an interdisciplinary approach that creates advanced probabilistic models for engineering fields, ranging from conventional fields of mechanical engineering and civil engineering, to electronics, electrical, earth sciences, climate, agriculture, water resource, mathematical sciences and computer sciences. Specific topics covered include minimax probability machine regression, stochastic finite element method, relevance vector machine, logistic regression, Monte Carlo simulations, random matrix, Gaussian process regression, Kalman filter, stochastic optimization, maximum likelihood, Bayesian inference, Bayesian update, kriging, copula-statistical models, and more. - Explains the application of advanced probabilistic models encompassing multidisciplinary research - Applies probabilistic modeling to emerging areas in engineering - Provides an interdisciplinary approach to probabilistic models and their applications, thus solving a wide range of practical problems
This fully updated new edition of a uniquely accessible textbook/reference provides a general introduction to probabilistic graphical models (PGMs) from an engineering perspective. It features new material on partially observable Markov decision processes, causal graphical models, causal discovery and deep learning, as well as an even greater number of exercises; it also incorporates a software library for several graphical models in Python. The book covers the fundamentals for each of the main classes of PGMs, including representation, inference and learning principles, and reviews real-world applications for each type of model. These applications are drawn from a broad range of disciplines, highlighting the many uses of Bayesian classifiers, hidden Markov models, Bayesian networks, dynamic and temporal Bayesian networks, Markov random fields, influence diagrams, and Markov decision processes. Topics and features: Presents a unified framework encompassing all of the main classes of PGMs Explores the fundamental aspects of representation, inference and learning for each technique Examines new material on partially observable Markov decision processes, and graphical models Includes a new chapter introducing deep neural networks and their relation with probabilistic graphical models Covers multidimensional Bayesian classifiers, relational graphical models, and causal models Provides substantial chapter-ending exercises, suggestions for further reading, and ideas for research or programming projects Describes classifiers such as Gaussian Naive Bayes, Circular Chain Classifiers, and Hierarchical Classifiers with Bayesian Networks Outlines the practical application of the different techniques Suggests possible course outlines for instructors This classroom-tested work is suitable as a textbook for an advanced undergraduate or a graduate course in probabilistic graphical models for students of computer science, engineering, and physics. Professionals wishing to apply probabilistic graphical models in their own field, or interested in the basis of these techniques, will also find the book to be an invaluable reference. Dr. Luis Enrique Sucar is a Senior Research Scientist at the National Institute for Astrophysics, Optics and Electronics (INAOE), Puebla, Mexico. He received the National Science Prize en 2016.
This dissertation presents methods for the formal modeling and specification of probabilistic systems, and algorithms for the automated verification of these systems. Our system models describe the behavior of a system in terms of probability, nondeterminism, fairness and time.