Dynamical Systems in Neuroscience

Dynamical Systems in Neuroscience

Author: Eugene M. Izhikevich

Publisher: MIT Press

Published: 2010-01-22

Total Pages: 459

ISBN-13: 0262514206

DOWNLOAD EBOOK

Explains the relationship of electrophysiology, nonlinear dynamics, and the computational properties of neurons, with each concept presented in terms of both neuroscience and mathematics and illustrated using geometrical intuition. In order to model neuronal behavior or to interpret the results of modeling studies, neuroscientists must call upon methods of nonlinear dynamics. This book offers an introduction to nonlinear dynamical systems theory for researchers and graduate students in neuroscience. It also provides an overview of neuroscience for mathematicians who want to learn the basic facts of electrophysiology. Dynamical Systems in Neuroscience presents a systematic study of the relationship of electrophysiology, nonlinear dynamics, and computational properties of neurons. It emphasizes that information processing in the brain depends not only on the electrophysiological properties of neurons but also on their dynamical properties. The book introduces dynamical systems, starting with one- and two-dimensional Hodgkin-Huxley-type models and continuing to a description of bursting systems. Each chapter proceeds from the simple to the complex, and provides sample problems at the end. The book explains all necessary mathematical concepts using geometrical intuition; it includes many figures and few equations, making it especially suitable for non-mathematicians. Each concept is presented in terms of both neuroscience and mathematics, providing a link between the two disciplines. Nonlinear dynamical systems theory is at the core of computational neuroscience research, but it is not a standard part of the graduate neuroscience curriculum—or taught by math or physics department in a way that is suitable for students of biology. This book offers neuroscience students and researchers a comprehensive account of concepts and methods increasingly used in computational neuroscience. An additional chapter on synchronization, with more advanced material, can be found at the author's website, www.izhikevich.com.


Neuronal Dynamics

Neuronal Dynamics

Author: Wulfram Gerstner

Publisher: Cambridge University Press

Published: 2014-07-24

Total Pages: 591

ISBN-13: 1107060834

DOWNLOAD EBOOK

This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.


Dynamic Neuroscience

Dynamic Neuroscience

Author: Zhe Chen

Publisher: Springer

Published: 2017-12-27

Total Pages: 337

ISBN-13: 3319719769

DOWNLOAD EBOOK

This book shows how to develop efficient quantitative methods to characterize neural data and extra information that reveals underlying dynamics and neurophysiological mechanisms. Written by active experts in the field, it contains an exchange of innovative ideas among researchers at both computational and experimental ends, as well as those at the interface. Authors discuss research challenges and new directions in emerging areas with two goals in mind: to collect recent advances in statistics, signal processing, modeling, and control methods in neuroscience; and to welcome and foster innovative or cross-disciplinary ideas along this line of research and discuss important research issues in neural data analysis. Making use of both tutorial and review materials, this book is written for neural, electrical, and biomedical engineers; computational neuroscientists; statisticians; computer scientists; and clinical engineers.


Dynamic Patterns

Dynamic Patterns

Author: J. A. Scott Kelso

Publisher: MIT Press

Published: 1995

Total Pages: 368

ISBN-13: 9780262611312

DOWNLOAD EBOOK

foreword by Hermann Haken For the past twenty years Scott Kelso's research has focused on extending the physical concepts of self- organization and the mathematical tools of nonlinear dynamics to understand how human beings (and human brains) perceive, intend, learn, control, and coordinate complex behaviors. In this book Kelso proposes a new, general framework within which to connect brain, mind, and behavior.Kelso's prescription for mental life breaks dramatically with the classical computational approach that is still the operative framework for many newer psychological and neurophysiological studies. His core thesis is that the creation and evolution of patterned behavior at all levels--from neurons to mind--is governed by the generic processes of self-organization. Both human brain and behavior are shown to exhibit features of pattern-forming dynamical systems, including multistability, abrupt phase transitions, crises, and intermittency. Dynamic Patterns brings together different aspects of this approach to the study of human behavior, using simple experimental examples and illustrations to convey essential concepts, strategies, and methods, with a minimum of mathematics. Kelso begins with a general account of dynamic pattern formation. He then takes up behavior, focusing initially on identifying pattern-forming instabilities in human sensorimotor coordination. Moving back and forth between theory and experiment, he establishes the notion that the same pattern-forming mechanisms apply regardless of the component parts involved (parts of the body, parts of the nervous system, parts of society) and the medium through which the parts are coupled. Finally, employing the latest techniques to observe spatiotemporal patterns of brain activity, Kelso shows that the human brain is fundamentally a pattern forming dynamical system, poised on the brink of instability. Self-organization thus underlies the cooperative action of neurons that produces human behavior in all its forms.


Dynamic Thinking

Dynamic Thinking

Author: Gregor Schöner

Publisher: Oxford University Press

Published: 2016

Total Pages: 421

ISBN-13: 0199300569

DOWNLOAD EBOOK

"This book describes a new theoretical approach--Dynamic Field Theory (DFT)--that explains how people think and act"--


Principles of Brain Dynamics

Principles of Brain Dynamics

Author: Mikhail I. Rabinovich

Publisher: MIT Press

Published: 2023-12-05

Total Pages: 371

ISBN-13: 0262549905

DOWNLOAD EBOOK

Experimental and theoretical approaches to global brain dynamics that draw on the latest research in the field. The consideration of time or dynamics is fundamental for all aspects of mental activity—perception, cognition, and emotion—because the main feature of brain activity is the continuous change of the underlying brain states even in a constant environment. The application of nonlinear dynamics to the study of brain activity began to flourish in the 1990s when combined with empirical observations from modern morphological and physiological observations. This book offers perspectives on brain dynamics that draw on the latest advances in research in the field. It includes contributions from both theoreticians and experimentalists, offering an eclectic treatment of fundamental issues. Topics addressed range from experimental and computational approaches to transient brain dynamics to the free-energy principle as a global brain theory. The book concludes with a short but rigorous guide to modern nonlinear dynamics and their application to neural dynamics.


Neural Engineering

Neural Engineering

Author: Chris Eliasmith

Publisher: MIT Press

Published: 2003

Total Pages: 384

ISBN-13: 9780262550604

DOWNLOAD EBOOK

A synthesis of current approaches to adapting engineering tools to the study of neurobiological systems.


Observed Brain Dynamics

Observed Brain Dynamics

Author: Partha Mitra

Publisher: Oxford University Press

Published: 2007-12-07

Total Pages: 405

ISBN-13: 0198039638

DOWNLOAD EBOOK

The biomedical sciences have recently undergone revolutionary change, due to the ability to digitize and store large data sets. In neuroscience, the data sources include measurements of neural activity measured using electrode arrays, EEG and MEG, brain imaging data from PET, fMRI, and optical imaging methods. Analysis, visualization, and management of these time series data sets is a growing field of research that has become increasingly important both for experimentalists and theorists interested in brain function. Written by investigators who have played an important role in developing the subject and in its pedagogical exposition, the current volume addresses the need for a textbook in this interdisciplinary area. The book is written for a broad spectrum of readers ranging from physical scientists, mathematicians, and statisticians wishing to educate themselves about neuroscience, to biologists who would like to learn time series analysis methods in particular and refresh their mathematical and statistical knowledge in general, through self-pedagogy. It may also be used as a supplement for a quantitative course in neurobiology or as a textbook for instruction on neural signal processing. The first part of the book contains a set of essays meant to provide conceptual background which are not technical and shall be generally accessible. Salient features include the adoption of an active perspective of the nervous system, an emphasis on function, and a brief survey of different theoretical accounts in neuroscience. The second part is the longest in the book, and contains a refresher course in mathematics and statistics leading up to time series analysis techniques. The third part contains applications of data analysis techniques to the range of data sources indicated above (also available as part of the Chronux data analysis platform from http://chronux.org), and the fourth part contains special topics.


Brain Dynamics

Brain Dynamics

Author: Hermann Haken

Publisher: Springer Science & Business Media

Published: 2007-12-22

Total Pages: 331

ISBN-13: 3540752382

DOWNLOAD EBOOK

This is an excellent introduction for graduate students and nonspecialists to the field of mathematical and computational neurosciences. The book approaches the subject via pulsed-coupled neural networks, which have at their core the lighthouse and integrate-and-fire models. These allow for highly flexible modeling of realistic synaptic activity, synchronization and spatio-temporal pattern formation. The more advanced pulse-averaged equations are discussed.


An Introduction to Modeling Neuronal Dynamics

An Introduction to Modeling Neuronal Dynamics

Author: Christoph Börgers

Publisher: Springer

Published: 2017-04-17

Total Pages: 445

ISBN-13: 3319511718

DOWNLOAD EBOOK

This book is intended as a text for a one-semester course on Mathematical and Computational Neuroscience for upper-level undergraduate and beginning graduate students of mathematics, the natural sciences, engineering, or computer science. An undergraduate introduction to differential equations is more than enough mathematical background. Only a slim, high school-level background in physics is assumed, and none in biology. Topics include models of individual nerve cells and their dynamics, models of networks of neurons coupled by synapses and gap junctions, origins and functions of population rhythms in neuronal networks, and models of synaptic plasticity. An extensive online collection of Matlab programs generating the figures accompanies the book.