Dynamic Modeling, Simulation and Control of Energy Generation

Dynamic Modeling, Simulation and Control of Energy Generation

Author: Ranjan Vepa

Publisher: Springer Science & Business Media

Published: 2013-09-11

Total Pages: 384

ISBN-13: 1447154002

DOWNLOAD EBOOK

This book addresses the core issues involved in the dynamic modeling, simulation and control of a selection of energy systems such as gas turbines, wind turbines, fuel cells and batteries. The principles of modeling and control could be applied to other non-convention methods of energy generation such as solar energy and wave energy. A central feature of Dynamic Modeling, Simulation and Control of Energy Generation is that it brings together diverse topics in thermodynamics, fluid mechanics, heat transfer, electro-chemistry, electrical networks and electrical machines and focuses on their applications in the field of energy generation, its control and regulation. This book will help the reader understand the methods of modelling energy systems for controller design application as well as gain a basic understanding of the processes involved in the design of control systems and regulators. It will also be a useful guide to simulation of the dynamics of energy systems and for implementing monitoring systems based on the estimation of internal system variables from measurements of observable system variables. Dynamic Modeling, Simulation and Control of Energy Generation will serve as a useful aid to designers of hybrid power generating systems involving advanced technology systems such as floating or offshore wind turbines and fuel cells. The book introduces case studies of the practical control laws for a variety of energy generation systems based on nonlinear dynamic models without relying on linearization. Also the book introduces the reader to the use nonlinear model based estimation techniques and their application to energy systems.


Modelling, Simulation and Control of Thermal Energy Systems

Modelling, Simulation and Control of Thermal Energy Systems

Author: Kwang Y. Lee

Publisher: MDPI

Published: 2020-11-03

Total Pages: 228

ISBN-13: 3039433601

DOWNLOAD EBOOK

Faced with an ever-growing resource scarcity and environmental regulations, the last 30 years have witnessed the rapid development of various renewable power sources, such as wind, tidal, and solar power generation. The variable and uncertain nature of these resources is well-known, while the utilization of power electronic converters presents new challenges for the stability of the power grid. Consequently, various control and operational strategies have been proposed and implemented by the industry and research community, with a growing requirement for flexibility and load regulation placed on conventional thermal power generation. Against this background, the modelling and control of conventional thermal engines, such as those based on diesel and gasoline, are experiencing serious obstacles when facing increasing environmental concerns. Efficient control that can fulfill the requirements of high efficiency, low pollution, and long durability is an emerging requirement. The modelling, simulation, and control of thermal energy systems are key to providing innovative and effective solutions. Through applying detailed dynamic modelling, a thorough understanding of the thermal conversion mechanism(s) can be achieved, based on which advanced control strategies can be designed to improve the performance of the thermal energy system, both in economic and environmental terms. Simulation studies and test beds are also of great significance for these research activities prior to proceeding to field tests. This Special Issue will contribute a practical and comprehensive forum for exchanging novel research ideas or empirical practices that bridge the modelling, simulation, and control of thermal energy systems. Papers that analyze particular aspects of thermal energy systems, involving, for example, conventional power plants, innovative thermal power generation, various thermal engines, thermal energy storage, and fundamental heat transfer management, on the basis of one or more of the following topics, are invited in this Special Issue: • Power plant modelling, simulation, and control; • Thermal engines; • Thermal energy control in building energy systems; • Combined heat and power (CHP) generation; • Thermal energy storage systems; • Improving thermal comfort technologies; • Optimization of complex thermal systems; • Modelling and control of thermal networks; • Thermal management of fuel cell systems; • Thermal control of solar utilization; • Heat pump control; • Heat exchanger control.


Modelling and Simulation of Power Generation Plants

Modelling and Simulation of Power Generation Plants

Author: Andrzej W. Ordys

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 326

ISBN-13: 1447121147

DOWNLOAD EBOOK

Many large-scale processes like refineries or power generation plant are constructed using the multi-vendor system and a main co-ordinating engineering contractor. With such a methodology. the key process units are installed complete with local proprietary control systems in place. Re-assessing the so called lower level control loop design or structure is becoming less feasible or desirable. Consequently, future comp~titive gains in large-scale industrial systems will arise from the closer and optimised global integration of the process sub-units. This is one of the inherent commercial themes which motivated the research reported in this monograph. To access the efficiency and feasibility of different large-scale system designs, the traditional tool has been the global steady-state analysis and energy balance. The process industries have many such tools encapsu lated as proprietary design software. However, to obtain a vital and critical insight into global process operation a dynamic model and simulation is necessary. Over the last decade, the whole state of the art in system simulation has irrevocably changed. The Graphical User Interface (G UI) and icon based simulation approach is now standard with hardware platforms becoming more and more powerful. This immediately opens the way to some new and advanced large-scale dynamic simulation developments. For example, click-together blocks from standard or specialised libraries of process units are perfectly feasible now.


Dynamic Estimation and Control of Power Systems

Dynamic Estimation and Control of Power Systems

Author: Abhinav Kumar Singh

Publisher: Academic Press

Published: 2018-10-04

Total Pages: 264

ISBN-13: 0128140062

DOWNLOAD EBOOK

Dynamic estimation and control is a fast growing and widely researched field of study that lays the foundation for a new generation of technologies that can dynamically, adaptively and automatically stabilize power systems. This book provides a comprehensive introduction to research techniques for real-time estimation and control of power systems. Dynamic Estimation and Control of Power Systems coherently and concisely explains key concepts in a step by step manner, beginning with the fundamentals and building up to the latest developments of the field. Each chapter features examples to illustrate the main ideas, and effective research tools are presented for signal processing-based estimation of the dynamic states and subsequent control, both centralized and decentralized, as well as linear and nonlinear. Detailed mathematical proofs are included for readers who desire a deeper technical understanding of the methods. This book is an ideal research reference for engineers and researchers working on monitoring and stability of modern grids, as well as postgraduate students studying these topics. It serves to deliver a clear understanding of the tools needed for estimation and control, while also acting as a basis for readers to further develop new and improved approaches in their own research. Offers the first concise, single resource on dynamic estimation and control of power systems Provides both an understanding of estimation and control concepts and a comparison of results Includes detailed case-studies, including MATLAB codes, to explain and demonstrate the concepts presented


Simulation of Power System with Renewables

Simulation of Power System with Renewables

Author: Linash Kunjumuhammed

Publisher: Academic Press

Published: 2019-10-02

Total Pages: 268

ISBN-13: 0128112549

DOWNLOAD EBOOK

Simulation of Power System with Renewables provides details on the modelling and efficient implementation of MATLAB, particularly with a renewable energy driven power system. The book presents a step-by-step approach to modelling implementation, including all major components used in current power systems operation, giving the reader the opportunity to learn how to gather models for conventional generators, wind farms, solar plants and FACTS control devices. Users will find this to be a central resource for modelling, building and simulating renewable power systems, including discussions on its limitations, assumptions on the model, and the implementation and analysis of the system. Presents worked examples and equations in each chapter that address system limitations and flexibility Provides step-by-step guidance for building and simulating models with required data Contains case studies on a number of devices, including FACTS, and renewable generation


Distributed Power Generation

Distributed Power Generation

Author: H. Lee Willis

Publisher: CRC Press

Published: 2000-01-11

Total Pages: 620

ISBN-13: 9780824703363

DOWNLOAD EBOOK

In the view of many power experts, distributed power generation represents the paradigm of the future. Distributed Power Generation: Planning and Evaluation explores the preparation and analysis of distributed generators (DGs) for residential, commercial and industrial, as well as electric utility applications. It examines distributed generation versus traditional, centralized power systems, power demands, reliability evaluation, planning processes, costs, reciprocating piston engine DGs, gas turbine powered DGs, fuel cell powered DGs, renewable resource DGs, and more. The authors include recommendations and guidelines for DG planners, and numerous case studies illustrate the discussions.


Flight Dynamics, Simulation, and Control

Flight Dynamics, Simulation, and Control

Author: Ranjan Vepa

Publisher: CRC Press

Published: 2014-08-18

Total Pages: 696

ISBN-13: 1466573368

DOWNLOAD EBOOK

Explore Key Concepts and Techniques Associated with Control Configured Elastic AircraftA rapid rise in air travel in the past decade is driving the development of newer, more energy-efficient, and malleable aircraft. Typically lighter and more flexible than the traditional rigid body, this new ideal calls for adaptations to some conventional concep


Modeling, Simulation and Control of Electrical Drives

Modeling, Simulation and Control of Electrical Drives

Author: Mohammed Fazlur Rahman

Publisher: Institution of Engineering and Technology

Published: 2019-07-27

Total Pages: 745

ISBN-13: 1785615874

DOWNLOAD EBOOK

Thanks to advances in power electronics device design, digital signal processing technologies and energy efficient algorithms, ac motors have become the backbone of the power electronics industry. Variable frequency drives (VFD's) together with IE3 and IE4 induction motors, permanent magnet motors, and synchronous reluctance motors have emerged as a new generation of greener high-performance technologies, which offer improvements to process and speed control, product quality, energy consumption and diagnostics analytics. Primarily intended for professionals and advanced students who are working on sensorless control, predictive control, direct torque control, speed control and power quality and optimisation techniques for electric drives, this edited book surveys state of the art novel control techniques for different types of ac machines. The book provides a framework of different modeling and control algorithms using MATLAB®/Simulink®, and presents design, simulation and experimental verification techniques for the design of lower cost and more reliable and performant systems.


Modeling and Simulation of Energy Systems

Modeling and Simulation of Energy Systems

Author: Thomas A. Adams II

Publisher: MDPI

Published: 2019-11-06

Total Pages: 496

ISBN-13: 3039215183

DOWNLOAD EBOOK

Energy Systems Engineering is one of the most exciting and fastest growing fields in engineering. Modeling and simulation plays a key role in Energy Systems Engineering because it is the primary basis on which energy system design, control, optimization, and analysis are based. This book contains a specially curated collection of recent research articles on the modeling and simulation of energy systems written by top experts around the world from universities and research labs, such as Massachusetts Institute of Technology, Yale University, Norwegian University of Science and Technology, National Energy Technology Laboratory of the US Department of Energy, University of Technology Sydney, McMaster University, Queens University, Purdue University, the University of Connecticut, Technical University of Denmark, the University of Toronto, Technische Universität Berlin, Texas A&M, the University of Pennsylvania, and many more. The key research themes covered include energy systems design, control systems, flexible operations, operational strategies, and systems analysis. The addressed areas of application include electric power generation, refrigeration cycles, natural gas liquefaction, shale gas treatment, concentrated solar power, waste-to-energy systems, micro-gas turbines, carbon dioxide capture systems, energy storage, petroleum refinery unit operations, Brayton cycles, to name but a few.