While hospitals can learn from other industries, they cannot be improved or run like factories. With work that is more individualized than standardized, and limited control over volume and arrivals, even the leanest-minded hospital must recognize that healthcare systems are more dynamic than nearly any work environment.Written with the creativity n
Our nation's capacity to care is becoming increasingly stressed as an aging and increasingly unhealthy population collides with a relative reduction in the numbers of clinicians and ever-tightening financial resources. If even the mildest of future-state predictions are to be believed, we need a significant restructuring of our entire healthcare system and its total Capacity to Care, such that we can simultaneously improve care capacity, cost, quality, accessibility, and resource gratification. Optimizing Your Capacity to Care: A Systems Approach to Hospital and Population Health Management provides comprehensive guidance to a new way to optimize and manage community-wide Care Capacity via a unique, holistic approach to healthcare operations. Through clear examples and actual project results, the book demonstrates the outcomes of a systems-level way of thinking about a community's Capacity to Care that incorporates and integrates the full spectrum of available clinical and communal resources into the care of patients, including hospitals, physicians, emergency departments, surgical services, local churches, civic organizations, pharmacies, and volunteers. The book details operational models for each major department of the hospital and a fully integrated communal resource pool to demonstrate how the optimization of capacity, resource utilization, cost, and clinical outcomes can be attained. And by providing healthcare leaders with a deeper understanding of key elements missing from the most common process improvement methodologies and approaches, this book offers fresh perspectives and bold alternatives for hospitals, health systems, and entire communities.
In both rich and poor nations, public resources for health care are inadequate to meet demand. Policy makers and health care providers must determine how to provide the most effective health care to citizens using the limited resources that are available. This chapter describes current and future challenges in the delivery of health care, and outlines the role that operations research (OR) models can play in helping to solve those problems. The chapter concludes with an overview of this book – its intended audience, the areas covered, and a description of the subsequent chapters. KEY WORDS Health care delivery, Health care planning HEALTH CARE DELIVERY: PROBLEMS AND CHALLENGES 3 1.1 WORLDWIDE HEALTH: THE PAST 50 YEARS Human health has improved significantly in the last 50 years. In 1950, global life expectancy was 46 years [1]. That figure rose to 61 years by 1980 and to 67 years by 1998 [2]. Much of these gains occurred in low- and middle-income countries, and were due in large part to improved nutrition and sanitation, medical innovations, and improvements in public health infrastructure.
From the Preface: Collectively, the chapters in this book address application domains including inpatient and outpatient services, public health networks, supply chain management, and resource constrained settings in developing countries. Many of the chapters provide specific examples or case studies illustrating the applications of operations research methods across the globe, including Africa, Australia, Belgium, Canada, the United Kingdom, and the United States. Chapters 1-4 review operations research methods that are most commonly applied to health care operations management including: queuing, simulation, and mathematical programming. Chapters 5-7 address challenges related to inpatient services in hospitals such as surgery, intensive care units, and hospital wards. Chapters 8-10 cover outpatient services, the fastest growing part of many health systems, and describe operations research models for primary and specialty care services, and how to plan for patient no-shows. Chapters 12 – 16 cover topics related to the broader integration of health services in the context of public health, including optimizing the location of emergency vehicles, planning for mass vaccination events, and the coordination among different parts of a health system. Chapters 17-18 address supply chain management within hospitals, with a focus on pharmaceutical supply management, and the challenges of managing inventory for nursing units. Finally, Chapters 19-20 provide examples of important and emerging research in the realm of humanitarian logistics.
Measuring Capacity to Care Using Nursing Data presents evidence-based solutions regarding the adoption of safe staffing principles and the optimum use of operational data to enable health service delivery strategies that result in improved patient and organizational outcomes. Readers will learn how to make better use of informatics to collect, share, link and process data collected operationally for the purpose of providing real-time information to decision- makers. The book discusses topics such as dynamic health care environments, health care operational inefficiencies and costly events, how to measure nursing care demand, nursing models of care, data quality and governance, and big data. The content of the book is a valuable source for graduate students in informatics, nurses, nursing managers and several members involved in health care who are interested in learning more about the beneficial use of informatics for improving their services. Presents and discusses evidences from real-world case studies from multiple countries Provides detailed insights of health system complexity in order to improve decision- making Demonstrates the link between nursing data and its use for efficient and effective healthcare service management Discusses several limitations currently experienced and their impact on health service delivery
This proceedings volume highlights the state-of-the-art knowledge related to optimization, decisions science and problem solving methods, as well as their application in industrial and territorial systems. It includes contributions tackling these themes using models and methods based on continuous and discrete optimization, network optimization, simulation and system dynamics, heuristics, metaheuristics, artificial intelligence, analytics, and also multiple-criteria decision making. The number and the increasing size of the problems arising in real life require mathematical models and solution methods adequate to their complexity. There has also been increasing research interest in Big Data and related challenges. These challenges can be recognized in many fields and systems which have a significant impact on our way of living: design, management and control of industrial production of goods and services; transportation planning and traffic management in urban and regional areas; energy production and exploitation; natural resources and environment protection; homeland security and critical infrastructure protection; development of advanced information and communication technologies. The chapters in this book examine how to deal with new and emerging practical problems arising in these different fields through the presented methodologies and their applications. The chapter topics are applicable for researchers and practitioners working in these areas, but also for the operations research community. The contributions were presented during the international conference “Optimization and Decision Science” (ODS2017), held at Hilton Sorrento Palace Conference Center, Sorrento, Italy, September 4 – 7, 2017. ODS 2017, was organized by AIRO, Italian Operations Research Society, in cooperation with DIETI (Department of Electrical Engineering and Information Technology) of University “Federico II” of Naples.
The five-volume set IFIP AICT 630, 631, 632, 633, and 634 constitutes the refereed proceedings of the International IFIP WG 5.7 Conference on Advances in Production Management Systems, APMS 2021, held in Nantes, France, in September 2021.* The 378 papers presented were carefully reviewed and selected from 529 submissions. They discuss artificial intelligence techniques, decision aid and new and renewed paradigms for sustainable and resilient production systems at four-wall factory and value chain levels. The papers are organized in the following topical sections: Part I: artificial intelligence based optimization techniques for demand-driven manufacturing; hybrid approaches for production planning and scheduling; intelligent systems for manufacturing planning and control in the industry 4.0; learning and robust decision support systems for agile manufacturing environments; low-code and model-driven engineering for production system; meta-heuristics and optimization techniques for energy-oriented manufacturing systems; metaheuristics for production systems; modern analytics and new AI-based smart techniques for replenishment and production planning under uncertainty; system identification for manufacturing control applications; and the future of lean thinking and practice Part II: digital transformation of SME manufacturers: the crucial role of standard; digital transformations towards supply chain resiliency; engineering of smart-product-service-systems of the future; lean and Six Sigma in services healthcare; new trends and challenges in reconfigurable, flexible or agile production system; production management in food supply chains; and sustainability in production planning and lot-sizing Part III: autonomous robots in delivery logistics; digital transformation approaches in production management; finance-driven supply chain; gastronomic service system design; modern scheduling and applications in industry 4.0; recent advances in sustainable manufacturing; regular session: green production and circularity concepts; regular session: improvement models and methods for green and innovative systems; regular session: supply chain and routing management; regular session: robotics and human aspects; regular session: classification and data management methods; smart supply chain and production in society 5.0 era; and supply chain risk management under coronavirus Part IV: AI for resilience in global supply chain networks in the context of pandemic disruptions; blockchain in the operations and supply chain management; data-based services as key enablers for smart products, manufacturing and assembly; data-driven methods for supply chain optimization; digital twins based on systems engineering and semantic modeling; digital twins in companies first developments and future challenges; human-centered artificial intelligence in smart manufacturing for the operator 4.0; operations management in engineer-to-order manufacturing; product and asset life cycle management for smart and sustainable manufacturing systems; robotics technologies for control, smart manufacturing and logistics; serious games analytics: improving games and learning support; smart and sustainable production and supply chains; smart methods and techniques for sustainable supply chain management; the new digital lean manufacturing paradigm; and the role of emerging technologies in disaster relief operations: lessons from COVID-19 Part V: data-driven platforms and applications in production and logistics: digital twins and AI for sustainability; regular session: new approaches for routing problem solving; regular session: improvement of design and operation of manufacturing systems; regular session: crossdock and transportation issues; regular session: maintenance improvement and lifecycle management; regular session: additive manufacturing and mass customization; regular session: frameworks and conceptual modelling for systems and services efficiency; regular session: optimization of production and transportation systems; regular session: optimization of supply chain agility and reconfigurability; regular session: advanced modelling approaches; regular session: simulation and optimization of systems performances; regular session: AI-based approaches for quality and performance improvement of production systems; and regular session: risk and performance management of supply chains *The conference was held online.
The aim of this book is to cover various aspects of the Production and Operations Analysis. Apart from the introduction to basic understanding of each topic, the book will also provide insights to various conventional techniques as well as, various other mathematical and nature-based techniques extracted from the existing literature. Concepts like smart factories, intelligent manufacturing, and various techniques of manufacturing will also be included. Various types of numerical examples will also be presented in each chapter and the descriptions will be done in lucid style with figures, point-wise descriptions, tables, pictures to facilitate easy understanding of the subject.