Dynamic Analysis of Coolant Circulation in Boiling Water Nuclear Reactors

Dynamic Analysis of Coolant Circulation in Boiling Water Nuclear Reactors

Author: Chathilingath K. Sanathanan

Publisher:

Published: 1964

Total Pages: 58

ISBN-13:

DOWNLOAD EBOOK

The dynamics of two-phase flow through the coolant channels of a natural-circulation boiling water nuclear reactor is studied analytically. One-dimensional conservation equations describing the flow through each channel are written in a linearized perturbed form, and Laplace transformation in time is performed. A systematic procedure is developed to approximate the solution. The solution may be oscillatory both in time and space, and the stability depends largely upon the steady-state profile of velocity and void fraction along the channel, as well as the channel length. The simplifying assumption made by earlier investigators that the slip ratio is constant along the channel length is shown to yield results close to the true solution.


Experimental and Numerical Stability Investigations on Natural Circulation Boiling Water Reactors

Experimental and Numerical Stability Investigations on Natural Circulation Boiling Water Reactors

Author: Christian Pablo Marcel

Publisher: IOS Press

Published: 2007

Total Pages: 160

ISBN-13: 1586038036

DOWNLOAD EBOOK

In the design of novel nuclear reactors active systems are replaced by passive ones in order to reduce the risk of failure. For that reason natural circulation is being considered as the primary cooling mechanism in next generation nuclear reactor designs such as the natural circulation boiling water reactor (BWR). In such a reactor, however, the flow is not a controlled parameter but is dependent on the power. As a result, the dynamical behavior significantly differs from that in conventional forced circulation BWRs. For that reason, predicting the stability characteristics of these reactors has to be carefully studied. In this work, a number of open issues are investigated regarding the stability of natural circulation BWRs (e.g. margins to instabilities at rated conditions, interaction between the thermal-hydraulics and the neutronics, and the occurrence of flashing induced instabilities) with a strong emphasis on experimental evidence.


Nonlinear Dynamic Analysis of Nuclear Reactor Primary Coolant Systems

Nonlinear Dynamic Analysis of Nuclear Reactor Primary Coolant Systems

Author:

Publisher:

Published: 1979

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The ADINA computer code is utilized to perform mechanical response analysis of pressurized reactor primary coolant systems subjected to postulated loss-of-coolant accident (LOCA) loadings. Specifically, three plant analyses are performed utilizing the geometric and material nonlinear analysis capabilities of ADINA. Each reactor system finite element model represents the reactor vessel and internals, piping, major components, and component supports in a single coupled model. Material and geometric nonlinear capabilities of the beam and truss elements are employed in the formulation of each finite element model. Loadings applied to each plant for LOCA dynamic analysis include steady-state pressure, dead weight, strain energy release, transient piping hydraulic forces, and reactor vessel cavity pressurization. Representative results are presented with some suggestions for consideration in future ADINA code development.


Thermal-Hydraulic Analysis of Nuclear Reactors

Thermal-Hydraulic Analysis of Nuclear Reactors

Author: Bahman Zohuri

Publisher: Springer

Published: 2017-05-23

Total Pages: 845

ISBN-13: 3319538292

DOWNLOAD EBOOK

This revised text covers the fundamentals of thermodynamics required to understand electrical power generation systems and the application of these principles to nuclear reactor power plant systems. The book begins with fundamental definitions of units and dimensions, thermodynamic variables and the Laws of Thermodynamics progressing to sections on specific applications of the Brayton and Rankine cycles for power generation and projected reactor systems design issues. It is not a traditional general thermodynamics text, per se, but a practical thermodynamics volume intended to explain the fundamentals and apply them to the challenges facing actual nuclear power plants systems, where thermal hydraulics comes to play. There have been significant new findings for intercooled systems since the previous edition published and they will be included in this volume. New technology plans for using a Nuclear Air-Brayton as a storage system for a low carbon grid are presented along with updated component sizes and performance criteria for Small Modular Reactors. Written in a lucid, straight-forward style while retaining scientific rigor, the content is accessible to upper division undergraduate students and aimed at practicing engineers in nuclear power facilities and engineering scientists and technicians in industry, academic research groups, and national laboratories. The book is also a valuable resource for students and faculty in various engineering programs concerned with nuclear reactors.


Boiling Water Reactors

Boiling Water Reactors

Author: Koji Nishida

Publisher: Elsevier

Published: 2023-01-28

Total Pages: 618

ISBN-13: 012821368X

DOWNLOAD EBOOK

Boiling Water Reactors, Volume Four in the JSME Series on Thermal and Nuclear Power Generation compiles the latest research in this very comprehensive reference that begins with an analysis of the history of BWR development and then moves through BWR plant design and innovations. The reader is guided through considerations for all BWR plant features and systems, including reactor internals, safety systems and plant instrumentation and control. Thermal-hydraulic aspects within a BWR core are analyzed alongside fuel analysis before comparisons of the latest BWR plant life management and maintenance technologies to promote safety and radiation protection practices are covered. The book's authors combine their in-depth knowledge and depth of experience in the field to analyze innovations and Next Generation BWRs, considering prospects for a variety of different BWRs, such as High-Conversion-BWRs, TRU-Burner Reactors and Economic Simplified BWRs. Written by experts from the leaders and pioneers in nuclear research at the Japanese Society of Mechanical Engineers Includes real examples and case studies from Japan, the US and Europe to provide a deeper learning opportunity with practical benefits Considers societal impacts and sustainability concerns and goals throughout the discussion Explores BWR plant design, thermal-hydraulic aspects, the reactor core and plant life management and maintenance in one complete resource