It is a truism that we can no longer freely pick areas with the most suitable ground conditions for building purposes. Soils must often be improved in order to take the loads from buildings, roads and other objects. This volume contains papers covering a range of relevant topics and issues.
The Deep Mixing Method (DMM), a deep in-situ soil stabilization technique using cement and/or lime as a stabilizing agent, was developed in Japan and in the Nordic countries independently in the 1970s. Numerous research efforts have been made in these areas investigating properties of treated soil, behavior of DMM improved ground under static and d
When finding another location, redesigning a structure, or removing troublesome ground at a project site are not practical options, prevailing ground conditions must be addressed. Improving the ground modifying its existing physical properties to enable effective, economic, and safe construction to achieve appropriate engineering performance is an
A growing population and increasing urbanization over the past century have made it difficult to locate suitable ground for siting infrastructures in densely populated areas. The Deep Mixing Method (DMM) was developed and put into practice in Japan in 1975 to cope with the headaches of stability and/or excessive settlement in soft soil areas. This method involves using cement and/or lime as a soil stabilizer, added in-situ to deep soils, and has now been adopted not only in Japan but in the USA and other parts of the world as well. This book presents properties of this treated soil method, its various applications, its design and execution, and accumulated research results over the last twenty-five years.
The increasing need to redevelop land in urban areas has led to major development in the field of ground improvement, a process that is continuing and expanding. Vibratory deep compaction and grouting techniques have also been increasingly applied to solving the problems of urban development, whether from tunnelling, excavation, building renovation or bearing capacity improvement and settlement reduction. The second edition of this well established book continues to provide an international overview of the major techniques in use. Comprehensively updated in line with recent developments, each chapter is written by an acknowledged expert in the field. Ground Improvements is written for geotechnical and civil engineers, and for contractors working in grouting, ground improvement, piling and environmental engineering.
GSP 228 contains contains 189 peer-reviewed papers focusing on the science and technology of grouting that were presented at the Fourth International Conference on Grouting and Deep Mixing, held in New Orleans, Louisiana, February 15-18, 2012.
Written by an international group of experts, Ground Improvement Case Histories: Chemical, Electrokinetic, Thermal and Bioengineering Methods provides over 700 pages of case-histories collected from all over the world. Each case-history provides an overview of the specific technology followed by applications, and in some cases, comprehensive back analysis through numerical modelling is discussed. The book includes methods for employing bacterial and biological treatment, and native vegetation for stabilizing problematic soils. Specific case-histories included in the book are: Effect of Drainage and Grouting for the World Longest Seikan Undersea Tunnel Construction, Cement/lime Mixing Ground Improvement for Road Construction on Soft Ground, Use of Jet Grouting in Deep Excavations, and Stabilization of Reactive Sulphide Mine Tailings using Water Cover Technology. - Provides recent case histories using chemical and bio-engineering methods by world-renowned engineering experts - Includes over 200 illustrations and 150 equations from relevant topics, including state-of-the-art chemical and bioengineering methods - Presents comprehensive analysis methods using numerical modelling methods - Case histories include the "Effect of Drainage and Grouting on the World's Longest Seikan Undersea Tunnel Construction" and "Cement/Lime Mixing Ground Improvement for Road Construction on Soft Ground"
New Techniques on Soft Soils is a compilation of the lectures and keynote lectures presented at the Symposium on New Techniques for Design and Construction in Soft Clays held in Guarujá, Brazil, between May 22 and 23, 2010. The book covers a wide range of updated techniques on several topics, such as site investigation, vertical drains, surcharge, piled embankment, granular piles, deep mixing, monitoring and performance.
This volume brings together scientific experts in different areas that contribute to the railway track and transportation engineering challenges, evaluate the state-of-the-art, identify the shortcomings and opportunities for research and promote the interaction with the industry. In particular, scientific topics that are addressed in this volume include railway ballasted track degradation/settlement problems and stabilization/reinforcement technologies, switches and crossings and related derailments causes, train-induced vibrations and mitigation measures, operations, management and performance of ground transportation, and traffic congestion and safety procedures. The volume is based on the best contributions to the 2nd GeoMEast International Congress and Exhibition on Sustainable Civil Infrastructures, Egypt 2018 – The official international congress of the Soil-Structure Interaction Group in Egypt (SSIGE).
Gain a stronger foundation with optimal ground improvement Before you break ground on a new structure, you need to analyze the structure of the ground. Expert analysis and optimization of the geo-materials on your site can mean the difference between a lasting structure and a school in a sinkhole. Sometimes problematic geology is expected because of the location, but other times it's only unearthed once construction has begun. You need to be able to quickly adapt your project plan to include an improvement to unfavorable ground before the project can safely continue. Principles and Practice of Ground Improvement is the only comprehensive, up-to-date compendium of solutions to this critical aspect of civil engineering. Dr. Jie Han, registered Professional Engineer and preeminent voice in geotechnical engineering, is the ultimate guide to the methods and best practices of ground improvement. Han walks you through various ground improvement solutions and provides theoretical and practical advice for determining which technique fits each situation. Follow examples to find solutions to complex problems Complete homework problems to tackle issues that present themselves in the field Study design procedures for each technique to simplify field implementation Brush up on modern ground improvement technologies to keep abreast of all available options Principles and Practice of Ground Improvement can be used as a textbook, and includes Powerpoint slides for instructors. It's also a handy field reference for contractors and installers who actually implement plans. There are many ground improvement solutions out there, but there is no single right answer to every situation. Principles and Practice of Ground Improvement will give you the information you need to analyze the problem, then design and implement the best possible solution.