Exploring fundamental concepts, Drug Delivery Nanoparticles Formulation and Characterization presents key aspects of nanoparticulate system development for various therapeutic applications and provides advanced methods used to file for regulatory approval.This comprehensive guide features:Process Analytical Techniques (PAT) used in manufacturing Na
What are lipid nanoparticles? How are they structured? How are they formed? What techniques are best to characterize them? How great is their potential as drug delivery systems? These questions and more are answered in this comprehensive and highly readable work on lipid nanoparticles. This work sets out to provide the reader with a clear and understandable understanding of the current practices in formulation, characterization and drug delivery of lipid nanoparticles. A comprehensive description of the current understanding of synthesis, characterization, stability optimization and drug incorporation of solid lipid nanoparticles is provided. Nanoparticles have attracted great interest over the past few decades with almost exponential growth in their research and application. Their small particle size and subsequent high surface area make them ideal in many uses, but particularly as drug carrier systems. Nanoparticles made from lipids are especially attractive because of their enhanced biocompatibility imparted by the lipid. The work provides a detailed description of the types of lipid nanoparticles available (e.g. SLN, NLC, LDC, PLN) and how they range from imperfect crystalline to amorphous in structure. Current thoughts on where drugs are situated (e.g. in the core, or at the interface) and how this can be manipulated are discussed. The many techniques for production, including the author’s own variant of microwave heating, are fully discussed. Techniques for measuring arguably the most important characteristics of particle size and polydispersity are discussed, along with techniques to measure crystallinity, shape and drug capacity. Finally, a full chapter on techniques for measuring stability, both in the absence and presence of drugs, is discussed, along with suggestions on how to optimize that stability. This work appeals to students of colloid science, practitioners of research into drug delivery and academics alike.
Characterization and Biology of Nanomaterials for Drug Delivery: Nanoscience and Nanotechnology in Drug Delivery describes the techniques successfully employed for the application of nanocarriers loaded with the antioxidant enzyme, catalase, and thus targeted to endothelial cells. Methods of nanocarrier synthesis, loading within various systems, and the characterization of nanocarriers for targeting activities are covered, as are their advantages, disadvantages and applications. Reflecting the interdisciplinary nature of the subject matter, this book includes contributions by experts from different fields, all with various backgrounds and expertise. It will appeal to researchers and students from different disciplines, such as materials science, technology and various biomedical fields. - Enables readers from different fields to access recent research and protocols across traditional boundaries - Focuses on protocols and techniques, as well as the knowledge base of the field, thus enabling those in R&D to learn about, and successfully deploy, cutting-edge techniques - Explores both current and emerging classes of nanomaterials, along with their fundamentals and applications
With the advent of analytical techniques and capabilities to measure particle sizes in nanometer ranges, there has been tremendous interest in the use of nanoparticles for more efficient methods of drug delivery. Nanoparticulate Drug Delivery Systems addresses the scientific methodologies, formulation, processing, applications, recent trends, and e
Nanomaterials for Drug Delivery and Therapy presents recent advances in the field of nanobiomaterials and their important applications in drug delivery, therapy and engineering. The book offers pharmaceutical perspectives, exploring the development of nanobiomaterials and their interaction with the human body. Chapters show how nanomaterials are used in treatments, including neurology, dentistry and cancer therapy. Authored by a range of contributors from global institutions, this book offers a broad, international perspective on how nanotechnology-based advances are leading to novel drug delivery and treatment solutions. It is a valuable research resource that will help both practicing medics and researchers in pharmaceutical science and nanomedicine learn more on how nanotechnology is improving treatments. - Assesses the opportunities and challenges of nanotechnology-based drug delivery systems - Explores how nanotechnology is being used to create more efficient drug delivery systems - Discusses which nanomaterials make the best drug carriers
Nanotechnology has the potential to change every part of our lives. Today, nanotechnology-based products are used in many areas, and one of the most important areas is drug delivery. Nanoparticulate drug delivery systems not only provide controlled delivery of drugs and improved drug solubility but also improve drug efficiency and reduce side effects via targeting mechanisms. However, compared with conventional drug delivery systems, few nanoparticle-based products are on the market and almost all are nontargeted or only passively targeted systems. In addition, obtaining targeted nanoparticle systems is quite complex and requires several evaluation mechanisms. This book discusses the production, characterization, regulation, and currently marketed targeted nanoparticle systems in a broad framework. It provides an overview of targeted nanoparticles’ (i) in vitro characterization, such as particle size, stability, ligand density, and type; (ii) in vivo behavior for different targeting areas, such as tumor, brain, and vagina; and (iii) current advances in this field, including clinical trials and regulation processes.
Organic Materials as Smart Nanocarriers for Drug Delivery presents the latest developments in the area of organic frameworks used in pharmaceutical nanotechnology. An up-to-date overview of organic smart nanocarriers is explored, along with the different types of nanocarriers, including polymeric micelles, cyclodextrins, hydrogels, lipid nanoparticles and nanoemlusions. Written by a diverse range of international academics, this book is a valuable reference for researchers in biomaterials, the pharmaceutical industry, and those who want to learn more about the current applications of organic smart nanocarriers. - Explores the most recent molecular- and structure-based applications of organic smart nanocarriers in drug delivery - Highlights different smart nanocarriers and assesses their intricate organic structural properties for improving drug delivery - Assesses how molecular organic frameworks lead to more effective drug delivery systems
Nanoemulsions: Formulation, Applications, and Characterization provides detailed information on the production, application and characterization of food nanoemulsion as presented by experts who share a wealth of experience. Those involved in the nutraceutical, pharmaceutical and cosmetic industries will find this a useful reference as it addresses findings related to different preparation and formulation methods of nanoemulsions and their application in different fields and products. As the last decade has seen a major shift from conventional emulsification processes towards nanoemulsions that both increase the efficiency and stability of emulsions and improve targeted drug and nutraceutical delivery, this book is a timely resource. - Summarizes general aspects of food nanoemulsions and their formulation - Provides detailed information on the production, application, and characterization of food nanoemulsion - Reveals the potential of nanoemulsions, as well as their novel applications in functional foods, nutraceutical products, delivery systems, and cosmetic formulations - Explains preparation of nanoemulsions by both low- and high-energy methods
Modeling and Control of Drug Delivery Systems provides comprehensive coverage of various drug delivery and targeting systems and their state-of-the-art related works, ranging from theory to real-world deployment and future perspectives. Various drug delivery and targeting systems have been developed to minimize drug degradation and adverse effect and increase drug bioavailability. Site-specific drug delivery may be either an active and/or passive process. Improving delivery techniques that minimize toxicity and increase efficacy offer significant potential benefits to patients and open up new markets for pharmaceutical companies. This book will attract many researchers working in DDS field as it provides an essential source of information for pharmaceutical scientists and pharmacologists working in academia as well as in the industry. In addition, it has useful information for pharmaceutical physicians and scientists in many disciplines involved in developing DDS, such as chemical engineering, biomedical engineering, protein engineering, gene therapy. - Presents some of the latest innovations of approaches to DDS from dynamic controlled drug delivery, modeling, system analysis, optimization, control and monitoring - Provides a unique, recent and comprehensive reference on DDS with the focus on cutting-edge technologies and the latest research trends in the area - Covers the most recent works, in particular, the challenging areas related to modeling and control techniques applied to DDS
This forward-looking book focuses on the recent advances in nanomedicine and drug delivery. It outlines the extraordinary new tools that have become available in nanomedicine and presents an integrated set of perspectives that describe where we are now and where we should be headed to put nanomedicine devices into applications as quickly as possible, while also considering the possible dangers of nanomedicine. The book considers the full range of nanomedicinal applications that employ molecular nanotechnology inside the human body, from the perspective of a future practitioner in an era of widely available nanomedicine. Written by some of the most innnovative minds in medicine and engineering, this unique volume will help professionals understand cutting-edge and futuristic areas of research that can have tremendous payoff in terms of improving human health. Readers will find insightful discussions of nanostructured intelligent materials and devices that are considered technically feasible and which have a high potential to produce advances in medicine in the near future. Topics include: Health benefits of phytochemicals and the application of colloidal delivery systems Study of non-covalent attachment of recombinant targeting proteins to polymer-modified Adenoviral gene delivery vectors The role of nanoparticles as adjuvants for mucosal vaccine delivery Poly(amido-amine)s as delivery styems for biologically active substances Antimicrobial activity of silver nanoparticles Nanomedicine in the use of cancer treatment Dendrimers, capsules based on lipid vesicles for drug delivery Many other recent achievements