Papers in this title offer understanding of allocyclic controls on non-marine stratigraphy, allowing better predictions about the nature and geometry of strata within areas of basins where data are more limited. Thus one can better estimate the potential for oil, gas, coal, or mineral accumulations. Authors examine the relative importance of eustasy, climate, and sedimentation supply in determining the nature of lithologies and the packaging of continental strata.
The Universal Soil Loss Equation (USLE) enables planners to predict the average rate of soil erosion for each feasible alternative combination of crop system and management practices in association with a specified soil type, rainfall pattern, and topography. When these predicted losses are compared with given soil loss tolerances, they provide specific guidelines for effecting erosion control within specified limits. The equation groups the numerous interrelated physical and management parameters that influence erosion rate under six major factors whose site-specific values can be expressed numerically. A half century of erosion research in many States has supplied information from which at least approximate values of the USLE factors can be obtained for specified farm fields or other small erosion prone areas throughout the United States. Tables and charts presented in this handbook make this information readily available for field use. Significant limitations in the available data are identified.
Rivers are important agents of change that shape the Earth's surface and evolve through time in response to fluctuations in climate and other environmental conditions. They are fundamental in landscape development, and essential for water supply, irrigation, and transportation. This book provides a comprehensive overview of the geomorphological processes that shape rivers and that produce change in the form of rivers. It explores how the dynamics of rivers are being affected by anthropogenic change, including climate change, dam construction, and modification of rivers for flood control and land drainage. It discusses how concern about environmental degradation of rivers has led to the emergence of management strategies to restore and naturalize these systems, and how river management techniques work best when coordinated with the natural dynamics of rivers. This textbook provides an excellent resource for students, researchers, and professionals in fluvial geomorphology, hydrology, river science, and environmental policy.
This book reviews the major achievements recently made in soil erosion and sediment redistribution research and management, and identifies future requirements. The book presents work from key players in river basin soil erosion and sediment redistribution from sources to sinks, field to riverbank, from academia to policy and industry. It examines the developments made in three themes - measurement, modelling and management - and covers a variety of scales (in both time and space) and geographical locations.
Climate and anthropogenic changes impact the conditions of erosion and sediment transport in rivers. Rainfall variability and, in many places, the increase of rainfall intensity have a direct impact on rainfall erosivity. Increasing changes in demography have led to the acceleration of land cover changes in natural areas, as well as in cultivated areas, and, sometimes, in degraded areas and desertified landscapes. These anthropogenized landscapes are more sensitive to erosion. On the other hand, the increase in the number of dams in watersheds traps a great portion of sediment fluxes, which do not reach the sea in the same amount, nor at the same quality, with consequences on coastal geomorphodynamics. This book is dedicated to studies on sediment fluxes from continental areas to coastal areas, as well as observation, modeling, and impact analysis at different scales from watershed slopes to the outputs of large river basins. This book is concentrated on a number of keywords: “erosion” and “sediment transport”, “model” and “practice”, and “change”. The keywords are briefly discussed with respect to the relevant literature. The contributions in this book address observations and models based on laboratory and field data, allowing researchers to make use of such resources in practice under changing conditions.
Introduction and history; Rainfall-runoff erosivity factor (R); Soil erodibility factor (K); Slope length and steepness factors (LS); Cover-management factor (C); Support practice factor (P); RUSLE user guide; Coversion to SI metric system; Calculation of EI from recording-raingage records; Estimating random roughness in the field; Parameter values for major agricultural crops and tillage operations.