Domains in Ferroic Crystals and Thin Films

Domains in Ferroic Crystals and Thin Films

Author: Alexander Tagantsev

Publisher: Springer Science & Business Media

Published: 2011-03-02

Total Pages: 828

ISBN-13: 1441914226

DOWNLOAD EBOOK

At present, the marketplace for professionals, researchers, and graduate students in solid-state physics and materials science lacks a book that presents a comprehensive discussion of ferroelectrics and related materials in a form that is suitable for experimentalists and engineers. This book proposes to present a wide coverage of domain-related issues concerning these materials. This coverage includes selected theoretical topics (which are covered in the existing literature) in addition to a plethora of experimental data which occupies over half of the book. The book presents experimental findings and theoretical understanding of ferroic (non-magnetic) domains developed during the past 60 years. It addresses the situation by looking specifically at bulk crystals and thin films, with a particular focus on recently-developed microelectronic applications and methods for observations of domains with techniques such as scanning force microscopy, polarized light microscopy, scanning optical microscopy, electron microscopy, and surface decorating techniques. "Domains in Ferroic Crystals and Thin Films" covers a large area of material properties and effects connected with static and dynamic properties of domains, which are extremely relevant to materials referred to as ferroics. In other textbooks on solid state physics, one large group of ferroics is customarily covered: those in which magnetic properties play a dominant role. Numerous books are specifically devoted to magnetic ferroics and cover a wide spectrum of magnetic domain phenomena. In contrast, "Domains in Ferroic Crystals and Thin Films" concentrates on domain-related phenomena in nonmagnetic ferroics. These materials are still inadequately represented in solid state physics textbooks and monographs.


Domain Walls

Domain Walls

Author: Dennis Meier

Publisher: Oxford University Press, USA

Published: 2020-09

Total Pages: 366

ISBN-13: 0198862490

DOWNLOAD EBOOK

As the first of its kind, this book identifies major questions and challenges that will influence research on domain walls in the years to come.


Ferroic Materials Based Technologies

Ferroic Materials Based Technologies

Author: Inamuddin

Publisher: John Wiley & Sons

Published: 2024-07-03

Total Pages: 356

ISBN-13: 1394238150

DOWNLOAD EBOOK

FERROIC MATERIALS-BASED TECHNOLOGIES The book addresses the prospective, relevant, and original research developments in the ferroelectric, magnetic, and multiferroic fields. Ferroic materials have sparked widespread attention because they represent a broad spectrum of elementary physics and are employed in a plethora of fields, including flexible memory, enormous energy harvesting/storage, spintronic functionalities, spin caloritronics, and a large range of other multi-functional devices. With the application of new ferroic materials, strong room-temperature ferroelectricity with high saturation polarization may be established in ferroelectric materials, and magnetism with significant magnetization can be accomplished in magnetic materials. Furthermore, magnetoelectric interaction between ferroelectric and magnetic orderings is high in multiferroic materials, which could enable a wide range of innovative devices. Magnetic, ferroelectric, and multiferroic 2D materials with ultrathin characteristics above ambient temperature are often expected to enable future miniaturization of electronics beyond Moore’s law for energy-efficient nanodevices. This book addresses the prospective, relevant, and original research developments in the ferroelectric, magnetic, and multiferroic fields. Audience The book will interest materials scientists, physicists, and engineers working in ferroic and multiferroic materials.


Topological Structures in Ferroic Materials

Topological Structures in Ferroic Materials

Author: Jan Seidel

Publisher: Springer

Published: 2016-02-12

Total Pages: 249

ISBN-13: 3319253018

DOWNLOAD EBOOK

This book provides a state-of-the art overview of a highly interesting emerging research field in solid state physics/nanomaterials science, topological structures in ferroic materials. Topological structures in ferroic materials have received strongly increasing attention in the last few years. Such structures include domain walls, skyrmions and vortices, which can form in ferroelectric, magnetic, ferroelastic or multiferroic materials. These topological structures can have completely different properties from the bulk material they form in. They also can be controlled by external fields (electrical, magnetic, strain) or currents, which makes them interesting from a fundamental research point of view as well as for potential novel nanomaterials applications. To provide a comprehensive overview, international leading researches in these fields contributed review-like chapters about their own work and the work of other researchers to provide a current view of this highly interesting topic.


Ferroic Functional Materials

Ferroic Functional Materials

Author: Jörg Schröder

Publisher: Springer

Published: 2017-11-23

Total Pages: 293

ISBN-13: 3319688839

DOWNLOAD EBOOK

The book covers experiments and theory in the fields of ferroelectrics, ferromagnets, ferroelastics, and multiferroics. Topics include experimental preparation and characterization of magnetoelectric multiferroics, the modeling of ferroelectric and ferromagnetic materials, the formation of ferroic microstructures and their continuum-mechanical modeling, computational homogenization, and the algorithmic treatment in the framework of numerical solution strategies.


Recent Advances in Topological Ferroics and their Dynamics

Recent Advances in Topological Ferroics and their Dynamics

Author: Robert L. Stamps

Publisher: Academic Press

Published: 2019-10-18

Total Pages: 304

ISBN-13: 0081029217

DOWNLOAD EBOOK

Recent Advances in Topological Ferroics and Their Dynamics, Volume 70 in the Solid State Physics series, provides the latest information on the branch of physics that is primarily devoted to the study of matter in its solid phase, especially at the atomic level. This prestigious serial presents timely and state-of-the-art reviews pertaining to all aspects of solid state physics. - Contains contributions from leading authorities in the study of solid state physics, especially at the atomic level - Informs and updates on all the latest developments in the field - Presents timely, state-of-the-art reviews pertaining to all aspects of solid state physics


Oxide Ultrathin Films

Oxide Ultrathin Films

Author: Gianfranco Pacchioni

Publisher: John Wiley & Sons

Published: 2012-09-19

Total Pages: 526

ISBN-13: 3527640185

DOWNLOAD EBOOK

A wealth of information in one accessible book. Written by international experts from multidisciplinary fields, this in-depth exploration of oxide ultrathin films covers all aspects of these systems, starting with preparation and characterization, and going on to geometrical and electronic structure, as well as applications in current and future systems and devices. From the Contents: Synthesis and Preparation of Oxide Ultrathin Films Characterization Tools of Oxide Ultrathin Films Ordered Oxide Nanostructures on Metal Surfaces Unusual Properties of Oxides and Other Insulators in the Ultrathin Limit Silica and High-K Dielectrics Thin Films in Microelectronics Oxide Passive Films and Corrosion Protection Oxide Films as Catalytic Materials and as Models of Real Catalysts Oxide Films in Spintronics Oxide Ultrathin Films in Solid Oxide Fuel Cells Transparent Conducting and Chromogenic Oxide Films as Solar Energy Materials Oxide Ultrathin Films in Sensor Applications Ferroelectricity in Ultrathin Film Capacitors Titania Thin Films in Biocompatible Materials and Medical Implants Oxide Nanowires for New Chemical Sensor Devices


Ferroelectric Domain Walls

Ferroelectric Domain Walls

Author: Jill Guyonnet

Publisher: Springer Science & Business Media

Published: 2014-04-08

Total Pages: 167

ISBN-13: 3319057502

DOWNLOAD EBOOK

Using the nano metric resolution of atomic force microscopy techniques, this work explores the rich fundamental physics and novel functionalities of domain walls in ferroelectric materials, the nano scale interfaces separating regions of differently oriented spontaneous polarization. Due to the local symmetry-breaking caused by the change in polarization, domain walls are found to possess an unexpected lateral piezoelectric response, even when this is symmetry-forbidden in the parent material. This has interesting potential applications in electromechanical devices based on ferroelectric domain patterning. Moreover, electrical conduction is shown to arise at domain walls in otherwise insulating lead zirconate titanate, the first such observation outside of multiferroic bismuth ferrite, due to the tendency of the walls to localize defects. The role of defects is then explored in the theoretical framework of disordered elastic interfaces possessing a characteristic roughness scaling and complex dynamic response. It is shown that the heterogeneous disorder landscape in ferroelectric thin films leads to a breakdown of the usual self-affine roughness, possibly related to strong pinning at individual defects. Finally, the roles of varying environmental conditions and defect densities in domain switching are explored and shown to be adequately modelled as a competition between screening effects and pinning.


Multifunctional Oxide Heterostructures

Multifunctional Oxide Heterostructures

Author: Evgeny Y. Tsymbal

Publisher: Oxford University Press

Published: 2012-08-30

Total Pages: 429

ISBN-13: 0199584125

DOWNLOAD EBOOK

This volume explores the rapidly developing field of oxide thin-films and heterostructures, which exhibit unusual physical properties interesting from the fundamental point of view and for device application. The chapters discuss topics that represent some of the key innovations in the field over recent years.


Nanoscale Ferroelectrics and Multiferroics

Nanoscale Ferroelectrics and Multiferroics

Author: Miguel Alguero

Publisher: John Wiley & Sons

Published: 2016-03-21

Total Pages: 984

ISBN-13: 1118935705

DOWNLOAD EBOOK

This two volume set reviews the key issues in processing and characterization of nanoscale ferroelectrics and multiferroics, and provides a comprehensive description of their properties, with an emphasis in differentiating size effects of extrinsic ones like boundary or interface effects. Recently described nanoscale novel phenomena are also addressed. Organized into three parts it addresses key issues in processing (nanostructuring), characterization (of the nanostructured materials) and nanoscale effects. Taking full advantage of the synergies between nanoscale ferroelectrics and multiferroics, the text covers materials nanostructured at all levels, from ceramic technologies like ferroelectric nanopowders, bulk nanostructured ceramics and thick films, and magnetoelectric nanocomposites, to thin films, either polycrystalline layer heterostructures or epitaxial systems, and to nanoscale free standing objects with specific geometries, such as nanowires and tubes at different levels of development. This set is developed from the high level European scientific knowledge platform built within the COST (European Cooperation in Science and Technology) Action on Single and multiphase ferroics and multiferroics with restricted geometries (SIMUFER, ref. MP0904). Chapter contributors have been carefully selected, and have all made major contributions to knowledge of the respective topics, and overall, they are among most respected scientists in the field.