Since the discovery of the DNA structure researchers have been highly interested in the molecular basis of genome inheritance. This book covers a wide range of aspects and issues related to the field of DNA replication. The association between genome replication, repair and recombination is also addressed, as well as summaries of recent work of the replication cycles of prokaryotic and eukaryotic viruses. The reader will gain an overview of our current understanding of DNA replication and related cellular processes, and useful resources for further reading.
The study of DNA advanced human knowledge in a way comparable to the major theories in physics, surpassed only by discoveries such as fire or the number zero. However, it also created conceptual shortcuts, beliefs and misunderstandings that obscure the natural phenomena, hindering its better understanding. The deep conviction that no human knowledge is perfect, but only perfectible, should function as a fair safeguard against scientific dogmatism and enable open discussion. With this aim, this book will offer to its readers 30 chapters on current trends in the field of DNA replication. As several contributions in this book show, the study of DNA will continue for a while to be a leading front of scientific activities.
Since the discovery of the DNA structure researchers have been highly interested in the molecular basis of genome inheritance. This book covers a wide range of aspects and issues related to the field of DNA replication. The association between genome replication, repair and recombination is also addressed, as well as summaries of recent work of the replication cycles of prokaryotic and eukaryotic viruses. The reader will gain an overview of our current understanding of DNA replication and related cellular processes, and useful resources for further reading.
Black & white print. Concepts of Biology is designed for the typical introductory biology course for nonmajors, covering standard scope and sequence requirements. The text includes interesting applications and conveys the major themes of biology, with content that is meaningful and easy to understand. The book is designed to demonstrate biology concepts and to promote scientific literacy.
DNA replication, the process of copying one double stranded DNA molecule to produce two identical copies, is at the heart of cell proliferation. This book highlights new insights into the replication process in eukaryotes, from the assembly of pre-replication complex and features of DNA replication origins, through polymerization mechanisms, to propagation of epigenetic states. It also covers cell cycle control of replication initiation and includes the latest on mechanisms of replication in prokaryotes. The association between genome replication and transcription is also addressed. We hope that readers will find this book interesting, helpful and inspiring.
Biology for AP® courses covers the scope and sequence requirements of a typical two-semester Advanced Placement® biology course. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology for AP® Courses was designed to meet and exceed the requirements of the College Board’s AP® Biology framework while allowing significant flexibility for instructors. Each section of the book includes an introduction based on the AP® curriculum and includes rich features that engage students in scientific practice and AP® test preparation; it also highlights careers and research opportunities in biological sciences.
This book reviews the latest trends and future directions of DNA replication research. The contents reflect upon the principles that have been established through the genetic and enzymatic studies of bacterial, viral, and cellular replication during the past decades. The book begins with a historical overview of the studies on eukaryotic DNA replication by Professor Thomas Kelly, a pioneer of the field. The following chapters include genome-wide studies of replication origins and initiation factor binding, as well as the timing of DNA replications, mechanisms of initiation, DNA chain elongation and termination of DNA replication, the structural basis of functions of protein complexes responsible for execution of DNA replication, cell cycle-dependent regulation of DNA replication, the nature of replication stress and cells’ strategy to deal with the stress, and finally how all these phenomena are interconnected to genome instability and development of various diseases. By reviewing the existing concepts ranging from the old principles to the newest ideas, the book gives readers an opportunity to learn how the classical replication principles are now being modified and new concepts are being generated to explain how genome DNA replication is achieved with such high adaptability and plasticity. With the development of new methods including cryoelectron microscopy analyses of huge protein complexes, single molecular analyses of initiation and elongation of DNA replication, and total reconstitution of eukaryotic DNA replication with purified factors, the field is enjoying one of its most exciting moments, and this highly timely book conveys that excitement to all interested readers.