Written in an accessible and comprehensive manner, DNA Photodamage will appeal to all scientists working in the area whether specialists in the discipline or not and provides a complete coverage of the field, from ultrafast spectroscopy to biomedical research.
Induction of DNA damage by sunlight is a major deleterious event in living organisms. Recent developments have dramatically improved our understanding of the photochemical processes involved at the sub-picosecond time scale and along with next generation sequencing and data processing has generated a need for a complete up-to-date coverage of the field. Written in an accessible and comprehensive manner, DNA Photodamage will appeal to all scientists working in the area whether specialists in the discipline or not and provides a complete coverage of the field, from ultrafast spectroscopy to biomedical research. Bridging the gap between photophysical and photochemical research on model systems, and in vivo and in vitro biological studies, this book aims to identify the most important research trends in the field and review their major findings.
In response to the overwhelming concern for possible acute and long-term effects of ozone depletion on terrestrial and aquatic life, this volume presents a comprehensive collection of review articles from an internationally acknowledged group of experts.
Stands as the most comprehensive guide to the subject-covering every essential topic related to DNA damage identification and repair. Covering a wide array of topics from bacteria to human cells, this book summarizes recent developments in DNA damage repair and recognition while providing timely reviews on the molecular mechanisms employe
As modern day society takes an increasing interest in outdoor activities, its exposure to sunlight has never been greater. As a consequence, countries throughout the world are experiencing a dramatic increase in the incidences of skin carcinomas and melanomas. From DNA photolesions to mutations, skin cancer and cell death provides an authoritative source of information for photobiologists interested in the series of genetic events that occur in the skin, and eventually lead to cancer. With contributions from eminent scientists in the field, this book includes the latest information on DNA photolesions and repair, as well as the key mechanisms of solar UV in skin cancer initiation and development. Significant information relating to UV-induced photolesions and mechanisms of skin tumour occurrence is also included. By providing the basic phenomena underlying the science and an overview of the biological events that take place when cells are exposed to solar UV radiation, From DNA photolesions to mutations, skin cancer and cell death is suitable to all researchers interested in the process of photocarcinogenesis.
The adverse effects of sunlight on the skin are well known, but only now is the scientific basis and rationale for treatment being evaluated. With the current level of interest from the general public and dermatologists in suntanning, sunburn and skin cancer, there is a great need for an authoritative, comprehensive review of the mechanisms, prevention and treatment of photodamage. There are only a handful of reputable clinical investigators who could put together an important volume and of this group, Dr. Gilchrest is probably the leading worker. She has collected all the latest information on photobiology, the effect of light on skin structure and function, clinical problems, prevention in adults and children, and medical and surgical treatment
Aging occurs at the level of individual cells, a complex interplay between intrinsic "programming" and exogenous "wear and tear", with genetically-determined cellular capacity to repair environmentally-induced DNA damage playing a central role in the rate of aging and its specific manifestations. In 12 chapters, "The Role of DNA Damage and Repair in Cell Aging" provides an intellectual framework for aging of mitotic and post-mitotic cells, describes a variety of model systems for further studies, and reviews current concepts of DNA responses and their relationship to the phenomenon of aging. As part of a series entitled "Advances in Cell Aging and Gerontology," this volume also summarizes seminal recent discoveries such as the molecular basis for Werner syndrome (a mutant DNA helicase), the complementary roles of telomere shortening and telomerase activity in cell senescence versus immortalization, the role of apoptosis in the homeostasis of aging tissue, and the existence of an inducible SOS-like response in mammalian cells that minimizes DNA damage from repeatedly encountered injurious environmental agents. Insights into the relationship between cellular aging and age-associated diseases, particularly malignancies, are also provided in several chapters. This book is an excellent single source of information for anyone interested in DNA repair, mechanisms of aging, or certainly their intersection. Students will gain a general appreciation of these fields, but even the most senior investigators will benefit from the detailed coverage of rapidly advancing areas.
Since Pasteur in 1846, scientists have been aware that many drugs are photoreactive, but until recently research in this area had been somewhat limited. However, since the introduction of acutely sensitive analytical methods, the realisation of the need to identify the photochemical properties of a potential drug as early in its development as possible and the increased attention to the phototoxic effect of drugs, more details are becoming available. Drugs: Photochemistry and Photostability presents the basic elements of the science, and serves as an excellent introduction to this emerging field of photochemistry. Detailed experimental conditions for photostability studies are given, along with a discussion of the recently implemented ICH Guidelines for drug photostability. With contributions from international experts in the field and including a comprehensive literature review, this book provides all the up-to-date information needed by researchers in many fields, especially medicinal and pharmaceutical chemistry.
Frontiers in Computational Chemistry, originally published by Bentham and now distributed by Elsevier, presents the latest research findings and methods in the diverse field of computational chemistry, focusing on molecular modeling techniques used in drug discovery and the drug development process. This includes computer-aided molecular design, drug discovery and development, lead generation, lead optimization, database management, computer and molecular graphics, and the development of new computational methods or efficient algorithms for the simulation of chemical phenomena including analyses of biological activity. In Volume 2, the authors continue the compendium with nine additional perspectives in the application of computational methods towards drug design. This volume covers an array of subjects from modern hardware advances that accelerate new antibacterial peptide identification, electronic structure methods that explain how singlet oxygen damages DNA, to QSAR model validation, the application of DFT and DFRT methods on understanding the action of nitrogen mustards, the design of novel prodrugs using molecular mechanics and molecular orbital methods, computational simulations of lipid bilayers, high throughput screening methods, and more. - Brings together a wide range of research into a single collection to help researchers keep up with new methods - Uniquely focuses on computational chemistry approaches that can accelerate drug design - Makes a solid connection between experiment and computation, and the novel application of computational methods in the fields of biology, chemistry, biochemistry, physics, and biophysics