A Guide To Distribution Theory And Fourier Transforms

A Guide To Distribution Theory And Fourier Transforms

Author: Robert S Strichartz

Publisher: World Scientific Publishing Company

Published: 2003-06-13

Total Pages: 238

ISBN-13: 9813102292

DOWNLOAD EBOOK

This important book provides a concise exposition of the basic ideas of the theory of distribution and Fourier transforms and its application to partial differential equations. The author clearly presents the ideas, precise statements of theorems, and explanations of ideas behind the proofs. Methods in which techniques are used in applications are illustrated, and many problems are included. The book also introduces several significant recent topics, including pseudodifferential operators, wave front sets, wavelets, and quasicrystals. Background mathematical prerequisites have been kept to a minimum, with only a knowledge of multidimensional calculus and basic complex variables needed to fully understand the concepts in the book.A Guide to Distribution Theory and Fourier Transforms can serve as a textbook for parts of a course on Applied Analysis or Methods of Mathematical Physics, and in fact it is used that way at Cornell.


Distributions, Fourier Transforms And Some Of Their Applications To Physics

Distributions, Fourier Transforms And Some Of Their Applications To Physics

Author: Thomas Schucker

Publisher: World Scientific Publishing Company

Published: 1991-04-22

Total Pages: 182

ISBN-13: 9813104406

DOWNLOAD EBOOK

In this book, distributions are introduced via sequences of functions. This approach due to Temple has two virtues:The Fourier transform is defined for functions and generalized to distributions, while the Green function is defined as the outstanding application of distributions. Using Fourier transforms, the Green functions of the important linear differential equations in physics are computed. Linear algebra is reviewed with emphasis on Hilbert spaces. The author explains how linear differential operators and Fourier transforms naturally fit into this frame, a point of view that leads straight to generalized fourier transforms and systems of special functions like spherical harmonics, Hermite, Laguerre, and Bessel functions.


Complex Variables

Complex Variables

Author: Steven G. Krantz

Publisher: CRC Press

Published: 2019-04-16

Total Pages: 252

ISBN-13: 1000007189

DOWNLOAD EBOOK

The idea of complex numbers dates back at least 300 years—to Gauss and Euler, among others. Today complex analysis is a central part of modern analytical thinking. It is used in engineering, physics, mathematics, astrophysics, and many other fields. It provides powerful tools for doing mathematical analysis, and often yields pleasing and unanticipated answers. This book makes the subject of complex analysis accessible to a broad audience. The complex numbers are a somewhat mysterious number system that seems to come out of the blue. It is important for students to see that this is really a very concrete set of objects that has very concrete and meaningful applications. Features: This new edition is a substantial rewrite, focusing on the accessibility, applied, and visual aspect of complex analysis This book has an exceptionally large number of examples and a large number of figures. The topic is presented as a natural outgrowth of the calculus. It is not a new language, or a new way of thinking. Incisive applications appear throughout the book. Partial differential equations are used as a unifying theme.


Fourier Analysis in Several Complex Variables

Fourier Analysis in Several Complex Variables

Author: Leon Ehrenpreis

Publisher: Courier Corporation

Published: 2011-11-30

Total Pages: 532

ISBN-13: 0486153037

DOWNLOAD EBOOK

Suitable for advanced undergraduates and graduate students, this text develops comparison theorems to establish the fundamentals of Fourier analysis and to illustrate their applications to partial differential equations. 1970 edition.


Distribution Theory and Transform Analysis

Distribution Theory and Transform Analysis

Author: A.H. Zemanian

Publisher: Courier Corporation

Published: 2011-11-30

Total Pages: 404

ISBN-13: 0486151948

DOWNLOAD EBOOK

Distribution theory, a relatively recent mathematical approach to classical Fourier analysis, not only opened up new areas of research but also helped promote the development of such mathematical disciplines as ordinary and partial differential equations, operational calculus, transformation theory, and functional analysis. This text was one of the first to give a clear explanation of distribution theory; it combines the theory effectively with extensive practical applications to science and engineering problems. Based on a graduate course given at the State University of New York at Stony Brook, this book has two objectives: to provide a comparatively elementary introduction to distribution theory and to describe the generalized Fourier and Laplace transformations and their applications to integrodifferential equations, difference equations, and passive systems. After an introductory chapter defining distributions and the operations that apply to them, Chapter 2 considers the calculus of distributions, especially limits, differentiation, integrations, and the interchange of limiting processes. Some deeper properties of distributions, such as their local character as derivatives of continuous functions, are given in Chapter 3. Chapter 4 introduces the distributions of slow growth, which arise naturally in the generalization of the Fourier transformation. Chapters 5 and 6 cover the convolution process and its use in representing differential and difference equations. The distributional Fourier and Laplace transformations are developed in Chapters 7 and 8, and the latter transformation is applied in Chapter 9 to obtain an operational calculus for the solution of differential and difference equations of the initial-condition type. Some of the previous theory is applied in Chapter 10 to a discussion of the fundamental properties of certain physical systems, while Chapter 11 ends the book with a consideration of periodic distributions. Suitable for a graduate course for engineering and science students or for a senior-level undergraduate course for mathematics majors, this book presumes a knowledge of advanced calculus and the standard theorems on the interchange of limit processes. A broad spectrum of problems has been included to satisfy the diverse needs of various types of students.