Robust Optimization

Robust Optimization

Author: Aharon Ben-Tal

Publisher: Princeton University Press

Published: 2009-08-10

Total Pages: 565

ISBN-13: 1400831059

DOWNLOAD EBOOK

Robust optimization is still a relatively new approach to optimization problems affected by uncertainty, but it has already proved so useful in real applications that it is difficult to tackle such problems today without considering this powerful methodology. Written by the principal developers of robust optimization, and describing the main achievements of a decade of research, this is the first book to provide a comprehensive and up-to-date account of the subject. Robust optimization is designed to meet some major challenges associated with uncertainty-affected optimization problems: to operate under lack of full information on the nature of uncertainty; to model the problem in a form that can be solved efficiently; and to provide guarantees about the performance of the solution. The book starts with a relatively simple treatment of uncertain linear programming, proceeding with a deep analysis of the interconnections between the construction of appropriate uncertainty sets and the classical chance constraints (probabilistic) approach. It then develops the robust optimization theory for uncertain conic quadratic and semidefinite optimization problems and dynamic (multistage) problems. The theory is supported by numerous examples and computational illustrations. An essential book for anyone working on optimization and decision making under uncertainty, Robust Optimization also makes an ideal graduate textbook on the subject.


Multistage Stochastic Optimization

Multistage Stochastic Optimization

Author: Georg Ch. Pflug

Publisher: Springer

Published: 2014-11-12

Total Pages: 309

ISBN-13: 3319088432

DOWNLOAD EBOOK

Multistage stochastic optimization problems appear in many ways in finance, insurance, energy production and trading, logistics and transportation, among other areas. They describe decision situations under uncertainty and with a longer planning horizon. This book contains a comprehensive treatment of today’s state of the art in multistage stochastic optimization. It covers the mathematical backgrounds of approximation theory as well as numerous practical algorithms and examples for the generation and handling of scenario trees. A special emphasis is put on estimation and bounding of the modeling error using novel distance concepts, on time consistency and the role of model ambiguity in the decision process. An extensive treatment of examples from electricity production, asset liability management and inventory control concludes the book.


Many-Criteria Optimization and Decision Analysis

Many-Criteria Optimization and Decision Analysis

Author: Dimo Brockhoff

Publisher: Springer Nature

Published: 2023-07-28

Total Pages: 364

ISBN-13: 3031252632

DOWNLOAD EBOOK

This book presents the state-of-the-art, current challenges, and future perspectives for the field of many-criteria optimization and decision analysis. The field recognizes that real-life problems often involve trying to balance a multiplicity of considerations simultaneously – such as performance, cost, risk, sustainability, and quality. The field develops theory, methods and tools that can support decision makers in finding appropriate solutions when faced with many (typically more than three) such criteria at the same time. The book consists of two parts: key research topics, and emerging topics. Part I begins with a general introduction to many-criteria optimization, perspectives from research leaders in real-world problems, and a contemporary survey of the attributes of problems of this kind. This part continues with chapters on fundamental aspects of many-criteria optimization, namely on order relations, quality measures, benchmarking, visualization, and theoretical considerations. Part II offers more specialized chapters on correlated objectives, heterogeneous objectives, Bayesian optimization, and game theory. Written by leading experts across the field of many-criteria optimization, this book will be an essential resource for researchers in the fields of evolutionary computing, operations research, multiobjective optimization, and decision science.


Randomized Algorithms for Analysis and Control of Uncertain Systems

Randomized Algorithms for Analysis and Control of Uncertain Systems

Author: Roberto Tempo

Publisher: Springer Science & Business Media

Published: 2012-10-21

Total Pages: 363

ISBN-13: 1447146093

DOWNLOAD EBOOK

The presence of uncertainty in a system description has always been a critical issue in control. The main objective of Randomized Algorithms for Analysis and Control of Uncertain Systems, with Applications (Second Edition) is to introduce the reader to the fundamentals of probabilistic methods in the analysis and design of systems subject to deterministic and stochastic uncertainty. The approach propounded by this text guarantees a reduction in the computational complexity of classical control algorithms and in the conservativeness of standard robust control techniques. The second edition has been thoroughly updated to reflect recent research and new applications with chapters on statistical learning theory, sequential methods for control and the scenario approach being completely rewritten. Features: · self-contained treatment explaining Monte Carlo and Las Vegas randomized algorithms from their genesis in the principles of probability theory to their use for system analysis; · development of a novel paradigm for (convex and nonconvex) controller synthesis in the presence of uncertainty and in the context of randomized algorithms; · comprehensive treatment of multivariate sample generation techniques, including consideration of the difficulties involved in obtaining identically and independently distributed samples; · applications of randomized algorithms in various endeavours, such as PageRank computation for the Google Web search engine, unmanned aerial vehicle design (both new in the second edition), congestion control of high-speed communications networks and stability of quantized sampled-data systems. Randomized Algorithms for Analysis and Control of Uncertain Systems (second edition) is certain to interest academic researchers and graduate control students working in probabilistic, robust or optimal control methods and control engineers dealing with system uncertainties. The present book is a very timely contribution to the literature. I have no hesitation in asserting that it will remain a widely cited reference work for many years. M. Vidyasagar


Optimization Algorithms

Optimization Algorithms

Author: Jan Valdman

Publisher: BoD – Books on Demand

Published: 2018-09-05

Total Pages: 148

ISBN-13: 1789236762

DOWNLOAD EBOOK

This book presents examples of modern optimization algorithms. The focus is on a clear understanding of underlying studied problems, understanding described algorithms by a broad range of scientists and providing (computational) examples that a reader can easily repeat.


Research Handbook on Inventory Management

Research Handbook on Inventory Management

Author: Jing-Sheng J. Song

Publisher: Edward Elgar Publishing

Published: 2023-08-14

Total Pages: 565

ISBN-13: 180037710X

DOWNLOAD EBOOK

This comprehensive Handbook provides an overview of state-of-the-art research on quantitative models for inventory management. Despite over half a century’s progress, inventory management remains a challenge, as evidenced by the recent Covid-19 pandemic. With an expanse of world-renowned inventory scholars from major international research universities, this Handbook explores key areas including mathematical modelling, the interplay of inventory decisions and other business decisions and the unique challenges posed to multiple industries.


Lectures on Stochastic Programming

Lectures on Stochastic Programming

Author: Alexander Shapiro

Publisher: SIAM

Published: 2009-01-01

Total Pages: 447

ISBN-13: 0898718759

DOWNLOAD EBOOK

Optimization problems involving stochastic models occur in almost all areas of science and engineering, such as telecommunications, medicine, and finance. Their existence compels a need for rigorous ways of formulating, analyzing, and solving such problems. This book focuses on optimization problems involving uncertain parameters and covers the theoretical foundations and recent advances in areas where stochastic models are available. Readers will find coverage of the basic concepts of modeling these problems, including recourse actions and the nonanticipativity principle. The book also includes the theory of two-stage and multistage stochastic programming problems; the current state of the theory on chance (probabilistic) constraints, including the structure of the problems, optimality theory, and duality; and statistical inference in and risk-averse approaches to stochastic programming.


ECAI 2023

ECAI 2023

Author: K. Gal

Publisher: IOS Press

Published: 2023-10-18

Total Pages: 3328

ISBN-13: 164368437X

DOWNLOAD EBOOK

Artificial intelligence, or AI, now affects the day-to-day life of almost everyone on the planet, and continues to be a perennial hot topic in the news. This book presents the proceedings of ECAI 2023, the 26th European Conference on Artificial Intelligence, and of PAIS 2023, the 12th Conference on Prestigious Applications of Intelligent Systems, held from 30 September to 4 October 2023 and on 3 October 2023 respectively in Kraków, Poland. Since 1974, ECAI has been the premier venue for presenting AI research in Europe, and this annual conference has become the place for researchers and practitioners of AI to discuss the latest trends and challenges in all subfields of AI, and to demonstrate innovative applications and uses of advanced AI technology. ECAI 2023 received 1896 submissions – a record number – of which 1691 were retained for review, ultimately resulting in an acceptance rate of 23%. The 390 papers included here, cover topics including machine learning, natural language processing, multi agent systems, and vision and knowledge representation and reasoning. PAIS 2023 received 17 submissions, of which 10 were accepted after a rigorous review process. Those 10 papers cover topics ranging from fostering better working environments, behavior modeling and citizen science to large language models and neuro-symbolic applications, and are also included here. Presenting a comprehensive overview of current research and developments in AI, the book will be of interest to all those working in the field.